Skip to main content

A Simple Path Decomposition of Brownian Motion Around Time t = 1

  • Chapter
  • First Online:
Local Times and Excursion Theory for Brownian Motion

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2088))

  • 2017 Accesses

Abstract

The operation of random Brownian scaling is introduced. Applied to the random intervals (0, g), (g, d), (g, 1), where g is the last Brownian zero before time 1, respectively, d is the first Brownian zero after time 1, it is shown that the corresponding Brownian scaled processes are respectively the Brownian bridge, the BES(3) bridge, and the Brownian meander. Independence properties of the Brownian meander allow to study Azéma’s remarkable martingale, which enjoys the chaos representation property, as shown by Emery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Azéma, Sur les fermés aléatoires. Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Math., vol. 1123. (Springer, Berlin, 1985), pp. 397–495

    Google Scholar 

  2. J. Azéma, M. Yor, Étude d’une martingale remarquable. Séminaire de Probabilités, XXIII. Lecture Notes in Math., vol. 1372. (Springer, Berlin, 1989), pp. 88–130

    Google Scholar 

  3. J. Bertoin, J. Pitman, Path transformations connecting Brownian bridge, excursion and meander. Bull. des Sci. Math. 118(2), 147–166 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Ph. Biane, Decompositions of Brownian trajectories and some applications. In Probability and Statistics; Rencontres Franco-Chinoises en Probabilités et Statistiques; Proceedings of the Wuhan meeting, ed. by A. Badrikian, P.-A. Meyer, J.-A. Yan (World Scientific, Singapore, 1993), pp. 51–76

    Google Scholar 

  5. M. Émery, On the Azéma martingales. Séminaire de Probabilités, XXIII. Lecture Notes in Math., vol. 1372. (Springer, Berlin, 1989), pp. 66–87

    Google Scholar 

  6. D. Revuz, M. Yor, Continuous martingales and Brownian motion. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 3rd edn. (Springer, Berlin, 1999)

    Google Scholar 

  7. W. Vervaat, A relation between Brownian bridge and Brownian excursion. Ann. Probab. 7(1), 143–149 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Williams, Decomposing the Brownian path. Bull. Am. Math. Soc. 76, 871–873 (1970)

    Article  MATH  Google Scholar 

  9. D. Williams, Path decomposition and continuity of local time for one-dimensional diffusions. I. Proc. Lond. Math. Soc. (3) 28, 738–768 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yen, JY., Yor, M. (2013). A Simple Path Decomposition of Brownian Motion Around Time t = 1. In: Local Times and Excursion Theory for Brownian Motion. Lecture Notes in Mathematics, vol 2088. Springer, Cham. https://doi.org/10.1007/978-3-319-01270-4_7

Download citation

Publish with us

Policies and ethics