Skip to main content

The Flamant Problem

  • Chapter
  • First Online:
Elasticity for Geotechnicians

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 204))

  • 2147 Accesses

Abstract

In 1892, the French mechanist Alfred-Aimé Flamant (1839–1914) posed and solved the equilibrium problem of a linearly elastic, isotropic and homogeneous body occupying a half-space acted upon by a perpendicular line load of constant magnitude per unit length and infinitely long support. In this chapter, we solve the Flamant Problem by a method different from his.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Sect. A.3.1 for an exposition of the classical Airy method to construct balanced and compatible plane stress fields.

  2. 2.

    This circumference has the Cartesian equation

    $$\begin{aligned} c^2=(x_1-c)^2+x_2^2=(\rho \cos \vartheta -c)^2+(\rho \sin \vartheta )^2= \rho ^2(1-(2c)\rho ^{-1}\cos \vartheta +c^2/\rho ^2). \end{aligned}$$

    In the geotechnical literature, this locus is called the pressure bulb.

  3. 3.

    A. Musesti, private communication, June 2004.

  4. 4.

    Here \(\widehat{{{\varvec{f}}}}(\mathcal{A},\mathcal{B})\) denotes the total contact force exerted by part \(\mathcal B\) over part \(\mathcal A\) along their common boundary.

  5. 5.

    Roughly speaking, the reduced boundary of a set—a measure-theoretic notion carefully introduced, e.g., in [1], p. 154—is the subset of all points of the topological boundary where a (inner) normal is well defined.

  6. 6.

    Private communication, August 2004.

  7. 7.

    In view of (2.54), the bounds (2.44)\(_2\) on \(\nu \), that descend from the positivity requirement for the density of elastic energy, translate into the following equivalent bounds for \(\nu _0\):

    $$\begin{aligned} -\frac{1}{2}<\nu _0<1. \end{aligned}$$
  8. 8.

    To find this result, (i) differentiate (4.32), and get:

    $$\begin{aligned} \frac{2(1-\nu _0)f}{\pi E_0}\cos \vartheta +\widehat{v}^{\prime \prime }(\vartheta )+\widehat{v}(\vartheta )=0; \end{aligned}$$

    (ii) recall that the well-known homogeneous equation associated with this second-order ODE admits a family of even solutions:

    $$\begin{aligned} \widehat{v}_h(\vartheta )=v_0\cos \vartheta ; \end{aligned}$$

    (iii) confirm that function

    $$\begin{aligned} \widehat{v}_p(\vartheta )=-\frac{(1-\nu _0)f}{\pi E_0}\vartheta \sin \vartheta \end{aligned}$$

    is a particular integral of the complete equation.

  9. 9.

    As a rule, when a boundary-value problem is formulated over an unbounded domain, the consequent lack of boundary conditions is compensated by posing on the solution a convenient set of conditions at infinity. This is not doable for the Flamant Problem, where the behavior at infinity of the elastic state is not tunable.

References

  1. Ambrosio L, Fusco N, Pallara D (2000) Functions of bounded variation and free discontinuity problems. Oxford University Press, New York

    MATH  Google Scholar 

  2. Boussinesq J (1878) Équilibre d’élasticité d’un sol isotrope sans pesanteur, supportant différents poids. CR Acad Sci 86:1260–1263

    MATH  Google Scholar 

  3. Boussinesq J (1885) Application des Potentiels à l’Étude de l’Équilibre et du Mouvement des Solides Élastiques. Gauthiers-Villars, Paris

    MATH  Google Scholar 

  4. Boussinesq J (1888) Équilibre d’élasticité d’un solide sans pesanteur, homogène et isotrope, dont les parties profondes sont maintenues fixes, pendant que sa surface éprouve des pressions ou des déplacements connus, s’annullant hors d’une région restreinte où ils sont arbitraires. CR Acad Sci 106(1043–1048):1119–1123

    MATH  Google Scholar 

  5. Boussinesq J (1892) Des perturbations locales que produit au-dessous d’elle une forte charge, répartie uniformément le long d’une droite normale aux deux bords, à la surface supérieure d’une poutre rectangulaire et de longueur indéfinie posée de champ soit sur un sol horizontal, soit sur deux appuis transversaux équidistants de la charge. CR Acad Sci 114:1510–1516

    MATH  Google Scholar 

  6. Flamant A (1892) Sur la répartition des pressions dans un solide rectangulaire chargé transversalement. CR Acad Sci 114:1465–1468

    MATH  Google Scholar 

  7. Marzocchi A, Musesti A (2004) Balance laws and weak boundary conditions in continuum mechanics. J Elast 74(3):239–248

    Article  MathSciNet  MATH  Google Scholar 

  8. Podio-Guidugli P (2004) Examples of concentrated contact interactions in simple bodies. J Elast 75:167–186

    Article  MathSciNet  MATH  Google Scholar 

  9. Schuricht F (2007) A new mathematical foundation for contact interactions in continuum physics. Arch Rat Mech Anal 184:495–551

    Article  MathSciNet  MATH  Google Scholar 

  10. Schuricht F (2007) Interactions in continuum physics. In: Šilhavý M (ed) Mathematical modeling of bodies with complicated bulk and boundary behavior. Quaderni di Matematica 20:169–196

    Google Scholar 

  11. Šilhavý M (2004) Geometric integration theory and Cauchy’s stress theorem. Unpublished lecture notes, March-September

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Podio-Guidugli .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Podio-Guidugli, P., Favata, A. (2014). The Flamant Problem. In: Elasticity for Geotechnicians. Solid Mechanics and Its Applications, vol 204. Springer, Cham. https://doi.org/10.1007/978-3-319-01258-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01258-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01257-5

  • Online ISBN: 978-3-319-01258-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics