Skip to main content

Results and Discussion

  • Chapter
  • First Online:
Charge Dynamics in 122 Iron-Based Superconductors

Part of the book series: Springer Theses ((Springer Theses))

  • 612 Accesses

Abstract

The standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity, based solely on an effective attractive interaction between electrons mediated by phonons, does not provide a satisfactory explanation of the properties of strongly correlated high-temperature superconductors.

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t agree with experiment, it’s wrong.

—Richard Feynman

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The discussion in this section is largely based on Ref. [1].

  2. 2.

    The discussion in this section is largely based on Ref. [39].

  3. 3.

    The feedback of superconductivity on the spin fluctuation spectrum observed by neutron scattering [63, 64] was not considered in our model calculation.

  4. 4.

    The discussion in this section is largely based on Ref. [71].

  5. 5.

    The discussion in this section is largely based on Ref. [92].

References

  1. Charnukha, A., et al. (2011). Superconductivity-induced optical anomaly in an iron arsenide. Nature Communication, 2, 219.

    Article  ADS  Google Scholar 

  2. Allender, D., Bray, J., & Bardeen, J. (1973). Model for an exciton mechanism of superconductivity. Physical Review B, 7, 1020–1029.

    Article  ADS  Google Scholar 

  3. Little, W. A. (1964). Possibility of synthesizing an organic superconductor. Physical Review, 134, A1416–A1424.

    Article  ADS  Google Scholar 

  4. Ginzburg, V. L. (1965). Concerning surface superconductivity. Soviet Physics JETP, 20, 1549.

    Google Scholar 

  5. Littlewood, P. B., et al. (2004). Models of coherent exciton condensation. Journal of Physics: Condensed Matter, 16, S3597–S3620.

    Article  ADS  Google Scholar 

  6. Hirsch, J. E., & Marsiglio, F. (1989). Superconducting state in an oxygen hole metal. Physical Review B, 39, 11515–11525.

    Article  ADS  Google Scholar 

  7. Basov, D. N., & Timusk, T. (2005). Electrodynamics of high-\({T}_{{\rm{c}}}\) superconductors. Reviews of Modern Physics, 77, 721–779.

    Article  ADS  Google Scholar 

  8. Maiti, S., & Chubukov, A. V. (2010). Optical integral and sum-rule violation in high-\({T}_{{\rm{c}}}\) superconductors. Physical Review B, 81, 245111.

    Article  ADS  Google Scholar 

  9. Holcomb, M. J., Perry, C. L., Collman, J. P., & Little, W. A. (1996). Thermal-difference reflectance spectroscopy of the high-temperature cuprate superconductors. Physical Review B, 53, 6734–6751.

    Article  ADS  Google Scholar 

  10. Boris, A. V., et al. (2004). In-plane spectral weight shift of charge carriers in \({\rm{YBa}}_2{\rm{Cu}}_3{\rm{O}}_{6.9}\). Science, 304, 708.

    Article  ADS  Google Scholar 

  11. Kuzmenko, A. B., Molegraaf, H. J. A., Carbone, F., & van der Marel, D. (2005). Temperature-modulation analysis of superconductivity-induced transfer of in-plane spectral weight in \({\rm{Bi}}_2{\rm{Sr}}_2{\rm{CaCu}}_2{\rm{O}}_8\). Physical Review B, 72, 144503.

    Article  ADS  Google Scholar 

  12. Toschi, A., et al. (2005). Temperature dependence of the optical spectral weight in the cuprates: Role of electron correlations. Physical Review Letters, 95, 097002.

    Article  ADS  Google Scholar 

  13. Haule, K., & Kotliar, G. (2007). Strongly correlated superconductivity: A plaquette dynamical mean-field theory study. Physical Review B, 76, 104509.

    Article  ADS  Google Scholar 

  14. Mazin, I. I. (2010). Superconductivity gets an iron boost. Nature, 464, 183.

    Article  ADS  Google Scholar 

  15. Boeri, L., Dolgov, O. V., & Golubov, A. A. (2008). Is \({\text{ LaFeAsO }}_{1-x}{\rm{F}}_x\) an electron-phonon superconductor? Physical Review Letters, 101, 026403.

    Article  ADS  Google Scholar 

  16. Mazin, I. I., Singh, D. J., Johannes, M. D., & Du, M. H. (2008). Unconventional superconductivity with a sign reversal in the order parameter of \({\text{ LaFeAsO }}_{1-x}{\rm{F}}_x\). Physical Review Letters, 101, 057003.

    Article  ADS  Google Scholar 

  17. Popovich, P., et al. (2010). Specific heat measurements of \({\rm{Ba}}_{0.68}{\rm{K}}_{0.32}{\rm{Fe}}_2{\rm{As}}_2\) single crystals: evidence for a multiband strong-coupling superconducting state. Physical Review Letters, 105, 027003.

    Article  ADS  Google Scholar 

  18. Li, G., et al. (2008). Probing the superconducting energy gap from infrared spectroscopy on a \({\rm{Ba}}_{0.6}{\rm{K}}_{0.4}{\rm{Fe}}_2{\rm{As}}_2\) single crystal with \({T}_{{\rm{c}}}\) = 37 K. Physical Review Letters, 101, 107004.

    Article  ADS  Google Scholar 

  19. Maldague, P. F. (1977). Optical spectrum of a Hubbard chain. Physical Review B, 16, 2437–2446.

    Article  ADS  Google Scholar 

  20. Hirsch, J. (1992). Apparent violation of the conductivity sum rule in certain superconductors. Physica C, 199, 305–310.

    Article  ADS  Google Scholar 

  21. Andersen, O. K. (1975). Linear methods in band theory. Physical Review B, 12, 3060–3083.

    Article  ADS  Google Scholar 

  22. Rotter, M., et al. (2008). Spin-density-wave anomaly at 140 K in the ternary iron arsenide \({\text{ BaFe }}_2{\rm{As}}_2\). Physical Review B, 78, 020503.

    Article  ADS  Google Scholar 

  23. Tegel, M. et al. (2008). Structural and magnetic phase transitions in the ternary iron arsenides \({\text{ SrFe }}_2{\rm {As}}_2\) and \({\text{ EuFe }}_2{\rm {As}}_2\). Journal of Physics: Condensed Matter, 20, 452201.

    Google Scholar 

  24. Analytis, J. G., Chu, J.-H., McDonald, R. D., Riggs, S. C., & Fisher, I. R. (2010). Enhanced Fermi-surface nesting in superconducting \({\text{ BaFe }}_2({\rm{As}}_{1-x}{\rm{P}}_x)_2\) revealed by de Haas-van Alphen effect. Physical Review Letters, 105, 207004.

    Article  ADS  Google Scholar 

  25. Analytis, J. G., et al. (2009). Fermi surface of \({\text{ SrFe }}_2{\rm{P}}_2\) determined by the de Haas-van Alphen effect. Physical Review Letters, 103, 076401.

    Article  ADS  Google Scholar 

  26. Yi, M., et al. (2009). Electronic structure of the \({\text{ BaFe }}_2{\rm{As}}_2\) family of iron-pnictide superconductors. Physical Review B, 80, 024515.

    Article  ADS  Google Scholar 

  27. Skornyakov, S. L., et al. (2009). Classification of the electronic correlation strength in the iron pnictides: The case of the parent compound \({\text{ BaFe }}_2{\rm{As}}_2\). Physical Review B, 80, 092501.

    Article  ADS  Google Scholar 

  28. Hu, W. Z., et al. (2008). Origin of the spin density wave instability in \(A{\rm{Fe}}_2{\rm{As}}_2 (A={\rm{Ba, Sr}})\) as revealed by optical spectroscopy. Physical Review Letters, 101, 257005.

    Article  ADS  Google Scholar 

  29. Shimojima, T., et al. (2010). Orbital-dependent modifications of electronic structure across the magnetostructural transition in \({\text{ BaFe }}_2{\rm{As}}_2\). Physical Review Letters, 104, 057002.

    Article  ADS  Google Scholar 

  30. Tinkham, M. (1995). Introduction to superconductivity. New York: McGraw-Hill.

    Google Scholar 

  31. Dobryakov, A. L., Farztdinov, V. M., Lozovik, Y. E., & Letokhov, V. S. (1994). Energy gap in the superconductor optical spectrum. Optics Communication, 105, 309–314.

    Article  ADS  Google Scholar 

  32. Suhl, H., Matthias, B. T., & Walker, L. R. (1959). Bardeen-Cooper-Schrieffer theory of superconductivity in the case of overlapping bands. Physical Review Letters, 3, 552–554.

    Article  ADS  MATH  Google Scholar 

  33. Berciu, M., Elfimov, I., & Sawatzky, G. A. (2009). Electronic polarons and bipolarons in iron-based superconductors: The role of anions. Physical Review B, 79, 214507.

    Article  ADS  Google Scholar 

  34. Sawatzky, G. A., Elfimov, I. S., van den Brink, J., & Zaanen, J. (2009). Heavy-anion solvation of polarity fluctuations in pnictides. Europhysics Letters, 86, 17006.

    Article  ADS  Google Scholar 

  35. Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Theory of superconductivity. Physical Review, 108, 1175–1204.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Evtushinsky, D. V., et al. (2009). Momentum dependence of the superconducting gap in \({\rm{Ba}}_{1-x}{\rm{K}}_x{\rm{Fe}}_2{\rm{As}}_2\). Physical Review B, 79, 054517.

    Article  ADS  Google Scholar 

  37. Lee, W. S., et al. (2007). Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature, 450, 81–84.

    Article  ADS  Google Scholar 

  38. Campuzano, J. C., et al. (1996). Direct observation of particle-hole mixing in the superconducting state by angle-resolved photoemission. Physical Review B, 53, R14737.

    Article  ADS  Google Scholar 

  39. Charnukha, A., et al. (2011). Eliashberg approach to infrared anomalies induced by the superconducting state of \({\rm {Ba}}_{0.68}{\rm {K}}_{0.32}{\rm {Fe}}_2{\rm {As}}_2\) single crystals. Physical Review B, 84, 174511.

    Google Scholar 

  40. Kamihara, Y., Watanabe, T., Hirano, M., & Hosono, H. (2008). Iron-based layered superconductor \({\rm{La}}[{\rm{O}}_{1-x}{\rm{F}}_x]{\rm{FeAs}} (x =0.05-0.12)\) with \(T_{{\rm{c}}}=26 {\rm{K}}\). Journal of the American Chemical Society, 130, 3296.

    Article  Google Scholar 

  41. Paglione, J., & Greene, R. L. (2010). High-temperature superconductivity in iron-based materials. Nature Physics, 6, 645.

    Article  ADS  Google Scholar 

  42. Johnston, D. C. (2010). The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Advances in Physics, 59, 803.

    Article  ADS  Google Scholar 

  43. Zhang, Y., et al. (2010). Out-of-plane momentum and symmetry-dependent energy gap of the pnictide \({\rm{Ba}}_{0.6}{\rm{K}}_{0.4}{\rm{Fe}}_2{\rm{As}}_2\) superconductor revealed by angle-resolved photoemission spectroscopy. Physical Review Letters, 105, 117003.

    Article  ADS  Google Scholar 

  44. Nakayama, K., et al. (2011). Universality of superconducting gaps in overdoped \({\rm {Ba}}_{0.3}{\rm {K}}_{0.7}{\rm {Fe}}_2{\rm {As}}_2\) observed by angle-resolved photoemission spectroscopy. Physical Review B, 83, 020501.

    Google Scholar 

  45. Xu, Y.-M., et al. (2011).Observation of a ubiquitous three-dimensional superconducting gap function in optimally doped \({\rm {Ba}}_{0.6}{\rm {K}}_{0.4}{\rm {Fe}}_2{\rm {As}}_2\). Nature Physics, 7, 198.

    Google Scholar 

  46. Shan, L. et al. (2011). Observation of ordered vortices with Andreev bound states in \({\rm {Ba}}_{0.6}{\rm {K}}_{0.4}{\rm {Fe}}_2{\rm {As}}_2\). Nature Physics 7, 325.

    Google Scholar 

  47. Shan, L., et al. (2011). Evidence of multiple nodeless energy gaps in superconducting \({\rm {Ba}}_{0.6}{\rm {K}}_{0.4}{\rm {Fe}}_2{\rm {As}}_2\) single crystals from scanning tunneling spectroscopy. Physical Review B, 83, 060510.

    Google Scholar 

  48. Sun, G. L., et al. (2011). Single crystal growth and effect of doping on structural, transport and magnetic properties of \(A_{1-x}{\rm{K}}_x{\rm{Fe}}_2{\rm{As}}_2\) (\(A =\)Ba, Sr). Journal of Superconductivity and Novel Magnetism, 24, 1773.

    Article  Google Scholar 

  49. Boris, A. V., et al. (2009). Signatures of electronic correlations in optical properties of \({\text{ LaFeAsO }}_{1-x}{\rm{F}}_x\). Physical Review Letters, 102, 027001.

    Article  ADS  Google Scholar 

  50. Tu, J. J., et al. (2010). Optical properties of the iron arsenic superconductor \({\text{ BaFe }}_{1.85}{\rm {Co}}_{0.15}{\rm {As}}_2\). Physical Review B, 82, 174509.

    Google Scholar 

  51. Kim, K. W., et al. (2010). Evidence for multiple superconducting gaps in optimally doped \({\text{ BaFe }}_{1.87}{\rm {Co}}_{0.13}{\rm {As}}_2\) from infrared spectroscopy. Physical Review B, 81, 214508.

    Google Scholar 

  52. Lobo, R. P. S. M., et al. (2010). Optical signature of subgap absorption in the superconducting state of \({\rm{Ba}}({\rm{Fe}}_{1-x}{\rm{Co}}_x)_2{\rm{As}}_2\). Physical Review B, 82, 100506.

    Article  ADS  Google Scholar 

  53. Zimmermann, W., Brandt, E., Bauer, M., Seider, E., & Genzel, L. (1991). Optical conductivity of BCS superconductors with arbitrary purity. Physica C, 183, 99.

    Article  ADS  Google Scholar 

  54. Nam, S. B. (1967). Theory of electromagnetic properties of superconducting and normal systems. I. Physical Review, 156, 470.

    Article  ADS  Google Scholar 

  55. Shulga, S., Dolgov, O., & Maksimov, E. (1991). Electronic states and optical spectra of HTSC with electron-phonon coupling. Physica C, 178, 266.

    Article  ADS  Google Scholar 

  56. Armitage, N. P., et al. (2010). Infrared conductivity of elemental bismuth under pressure: Evidence for an avoided Lifshitz-type semimetal-semiconductor transition. Physical Review Letters, 104, 237401.

    Article  ADS  Google Scholar 

  57. Nam, S. B. (1967). Theory of electromagnetic properties of strong-coupling and impure superconductors. II. Physical Review, 156, 487.

    Article  ADS  Google Scholar 

  58. Dolgov, O. V., Kremer, R. K., Kortus, J., Golubov, A. A., & Shulga, S. V. (2005). Thermodynamics of two-band superconductors: The case of \({\rm{MgB}}_2\). Physical Review B, 72, 024504.

    Article  ADS  Google Scholar 

  59. Golubov, A. A., & Mazin, I. I. (1997). Effect of magnetic and nonmagnetic impurities on highly anisotropic superconductivity. Physical Review B, 55, 15146.

    Article  ADS  Google Scholar 

  60. Chen, G. F., et al. (2008). Transport and anisotropy in single-crystalline \({\text{ SrFe }}_2{\rm {As}}_2\) and \(A_{0.6}{\rm {K}}_{0.4}{\rm {Fe}}_2{\rm {As}}_2\) (\(A=\) Sr, Ba) superconductors. Physical Review B, 78, 224512.

    Google Scholar 

  61. Rotter, M., Tegel, M., & Johrendt, D. (2008). Superconductivity at 38 K in the iron arsenide \(({\rm{Ba}}_{1-x}{\rm{K}}_x){\rm{Fe}}_2{\rm{As}}_2\). Physical Review Letters, 101, 107006.

    Article  ADS  Google Scholar 

  62. Mu, G., et al. (2009). Low temperature specific heat of the hole-doped \({\rm {Ba}}_{0.6}{\rm {K}}_{0.4}{\rm {Fe}}_2{\rm {As}}_2\) single crystals. Physical Review B, 79, 174501.

    Google Scholar 

  63. Christianson, A. D., et al. (2008). Unconventional superconductivity in \({\rm{Ba}}_{0.6}{\rm{K}}_{0.4}{\rm{Fe}}_2{\rm{As}}_2\) from inelastic neutron scattering. Nature, 456, 930.

    Article  ADS  Google Scholar 

  64. Inosov, D. S., et al. (2009). Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped \({\text{ BaFe }}_{1.85}{\rm {Co}}_{0.15}{\rm {As}}_2\). Nature Physics, 6, 178.

    Google Scholar 

  65. Nicol, E. J., Carbotte, J. P., & Timusk, T. (1991). Optical conductivity in high-\(T_{{\rm{c}}}\) superconductors. Physical Review B, 43, 473–479.

    Article  ADS  Google Scholar 

  66. Charnukha, A. (2011). Interactive simulation. http://www.fkf.mpg.de/keimer/groups/optical/bkfafir.jar.

  67. Fang, L., et al. (2009). Roles of multiband effects and electron-hole asymmetry in the superconductivity and normal-state properties of \({\rm{Ba}}({\rm{Fe}}_{1-x}{\rm{Co}}_x)_2{\rm{As}}_2\). Physical Review B, 80, 140508.

    Article  ADS  Google Scholar 

  68. Coldea, A. I., et al. (2008). Fermi surface of superconducting LaFePO determined from quantum oscillations. Physical Review Letters, 101, 216402.

    Article  ADS  Google Scholar 

  69. Tortello, M., et al. (2010). Multigap superconductivity and strong electron-boson coupling in Fe-based superconductors: A point-contact Andreev-reflection study of \({\rm{Ba}}({\rm{Fe}}_{1-x}{\rm{Co}}_x)_2{\rm{As}}_2\) single crystals. Physical Review Letters, 105, 237002.

    Article  ADS  Google Scholar 

  70. Hardy, F., et al. (2010). Doping evolution of superconducting gaps and electronic densities of states in \({\rm{Ba}}({\rm{Fe}}_{1-x}{\rm{Co}}_x)_2{\rm{As}}_2\) iron pnictides. Europhysics Letters, 91, 47008.

    Article  ADS  Google Scholar 

  71. Charnukha, A., et al. (2012). Optical conductivity of superconducting \({\rm{Rb}}_2{\rm{Fe}}_4{\rm{Se}}_5\) single crystals. Physical Review B, 85, 100504.

    Article  ADS  Google Scholar 

  72. Barišić, N., et al. (2010). Electrodynamics of electron-doped iron pnictide superconductors: Normal-state properties. Physical Review B, 82, 054518.

    Article  ADS  Google Scholar 

  73. Guo, J., et al. (2010). Superconductivity in the iron selenide \({\rm {K}}_x{\rm {Fe}}_2{\rm {Se}}_2\) \((0\le x\le 1.0) \). Physical Review B, 82, 180520.

    Google Scholar 

  74. Ying, J. J., et al. (2011). Superconductivity and magnetic properties of single crystals of \({\rm {K}}_{0.75}{\rm {Fe}}_{1.66}{\rm {Se}}_2\) and \({\rm {Cs}}_{0.81}{\rm {Fe}}_{1.61}{\rm {Se}}_2\). Physical Review B, 83, 212502.

    Google Scholar 

  75. Mizuguchi, Y., et al. (2011). Transport properties of the new Fe-based superconductor \({\rm{K}}_x{\rm{Fe}}_2{\rm{Se}}_2\) \((T_{{\rm{c}}} = 33 {\rm{K}})\). Applied Physics Letters, 98, 042511.

    Article  ADS  Google Scholar 

  76. Wang, A. F., et al. (2011). Superconductivity at 32 k in single-crystalline \({\rm{Rb}}_x{\rm{Fe}}_{2-y}{\rm{Se}}_2\). Physical Review B, 83, 060512.

    Article  ADS  Google Scholar 

  77. Bacsa, J., et al. (2011). Cation vacancy order in the \({\rm {K}}_{0.8+x}{\rm {Fe}}_{1.6-y}{\rm {Se}}_2\) system: Five-fold cell expansion accommodates 20% tetrahedral vacancies. Chemical Sciences, 2, 1054.

    Google Scholar 

  78. Bao, W., et al. (2011). A novel large moment antiferromagnetic order in \({\rm{K}}_{0.8}{\rm{Fe}}_{1.6}{\rm{Se}}_2\) superconductor. Chinese Physics Letters, 28, 086104.

    Article  ADS  Google Scholar 

  79. Park, J. T., et al. (2011). Magnetic resonant mode in the low-energy spin-excitation spectrum of superconducting \({\rm{Rb}}_2{\rm{Fe}}_4{\rm{Se}}_5\) single crystals. Physical Review Letters, 107, 177005.

    Article  ADS  Google Scholar 

  80. Ricci, A., et al. (2011). Nanoscale phase separation in the iron chalcogenide superconductor \({\rm {K}}_{0.8}{\rm {Fe}}_{1.6}{\rm {Se}}_2\) as seen via scanning nanofocused X-ray diffraction. Physical Review B, 84, 060511.

    Google Scholar 

  81. Yuan, R. H., et al. (2012). Nanoscale phase separation of antiferromagnetic order and superconductivity in \({\rm {K}}_{0.75}{\rm {Fe}}_{1.75}{\rm {Se}}_2\). Science Report, 2, 221.

    Google Scholar 

  82. Li, W., et al. (2012). Phase separation and magnetic order in K-doped iron selenide superconductor. Nature Physics, 8, 126–130.

    Article  ADS  Google Scholar 

  83. Wang, M., et al. (2011). Antiferromagnetic order and superlattice structure in nonsuperconducting and superconducting \({\rm {Rb}}_y{\rm {Fe}}_{1.6+x}{\rm {Se}}_2\). Physical Review B, 84, 094504.

    Google Scholar 

  84. Chen, Z. G., et al. (2011). Infrared spectrum and its implications for the electronic structure of the semiconducting iron selenide \({\rm {K}}_{0.83}{\rm {Fe}}_{1.53}{\rm {Se}}_2\). Physical Review B, 83, 220507.

    Google Scholar 

  85. Tsurkan, V., et al. (2011). Anisotropic magnetism, superconductivity, and the phase diagram of \({\rm{Rb}}_{1-x}{\rm{Fe}}_{2-y}{\rm{Se}}_2\). Physical Review B, 84, 144520.

    Article  ADS  Google Scholar 

  86. Ksenofontov, V., et al. (2011). Phase separation in superconducting and antiferromagnetic \({\rm {Rb}}_{0.8}{\rm {Fe}}_{1.6}{\rm {Se}}_2\) probed by Mössbauer spectroscopy. Physical Review B, 84, 180508.

    Google Scholar 

  87. Ye, F., et al. (2011). Common crystalline and magnetic structure of superconducting \(A_2{\rm {Fe}}_4{\rm {Se}}_5\) (\(A={\rm K}\), Rb, Cs, Tl) single crystals measured using neutron diffraction. Physical Review Letters, 107, 137003.

    Google Scholar 

  88. Coldea, A. I., et al. (2009). Topological change of the Fermi surface in ternary iron pnictides with reduced \(c/a\) ratio: A de Haas-van Alphen study of \({\rm{CaFe}}_2{\rm{P}}_2\). Physical Review Letters, 103, 026404.

    Article  ADS  Google Scholar 

  89. Shishido, H., et al. (2010). Evolution of the Fermi surface of \({\text{ BaFe }}_2({\rm{As}}_{1-x}{\rm{P}}_x)_2\) on entering the superconducting dome. Physical Review Letters, 104, 057008.

    Article  ADS  Google Scholar 

  90. Yan, X.-W., Gao, M., Lu, Z.-Y., & Xiang, T. (2011). Ternary iron selenide \({\rm {K}}_{0.8}{\rm {Fe}}_{1.6}{\rm {Se}}_2\) is an antiferromagnetic semiconductor. Physical Review B, 83, 233205.

    Google Scholar 

  91. Cao, C., & Dai, J. (2011). Block spin ground state and three-dimensionality of \({\rm{(K, Tl)}}_y{\rm{Fe}}_{1.6}{\rm{Se}}_2\). Physical Review Letters, 107, 056401.

    Article  ADS  Google Scholar 

  92. Charnukha, A., et al. (2012). Nanoscale layering of antiferromagnetic and superconducting phases in \({\rm{Rb}}_2{\rm{Fe}}_4{\rm{Se}}_5\) single crystals. Physical Review Letters, 109, 017003.

    Article  ADS  Google Scholar 

  93. Zhang, Y., et al. (2011). Nodeless superconducting gap in \(A_x{\rm {Fe}}_2{\rm {Se}}_2\) (\(A={\rm K}\), Cs) revealed by angle-resolved photoemission spectroscopy. Nature Materials, 10, 273–277.

    Google Scholar 

  94. Chen, F., et al. (2011). Electronic identification of the parental phases and mesoscopic phase separation of \({\rm{K}}_x{\rm{Fe}}_{2-y}{\rm{Se}}_2\) superconductors. Physical Review X, 1, 021020.

    Article  ADS  Google Scholar 

  95. Park, J. T., et al. (2009). Electronic phase separation in the slightly underdoped iron pnictide superconductor \({\rm{Ba}}_{1-x}{\rm{K}}_x{\rm{Fe}}_2{\rm{As}}_2\). Physical Review Letters, 102, 117006.

    Article  ADS  Google Scholar 

  96. Inosov, D. S., et al. (2009). Suppression of the structural phase transition and lattice softening in slightly underdoped \({\rm{Ba}}_{1-x}{\rm{K}}_x{\rm{Fe}}_2{\rm{As}}_2\) with electronic phase separation. Physical Review B, 79, 224503.

    Article  ADS  Google Scholar 

  97. Marsik, P., et al. (2010). Coexistence and competition of magnetism and superconductivity on the nanometer scale in underdoped \({\text{ BaFe }}_{1.89}{\rm{Co}}_{0.11}{\rm{As}}_2\). Physical Review Letters, 105, 057001.

    Article  ADS  Google Scholar 

  98. Ksenofontov, V., et al. (2012). Superconductivity and magnetism in \({\rm {Rb}}_{0.8}{\rm {Fe}}_{1.6}{\rm {Se}}_2\) under pressure. Physical Review B, 85, 214519.

    Google Scholar 

  99. Shermadini, Z., et al. (2012). Superconducting properties of single-crystalline \(A_x{\rm{Fe}}_{2-y}{\rm{Se}}_2\) (\(A={\text{ Rb, } \text{ K }}\)) studied using muon spin spectroscopy. Physical Review B, 85, 100501.

    Article  ADS  Google Scholar 

  100. Texier, Y., et al. (2012). NMR study in the iron-selenide \({\rm{Rb}}_{0.74}{\rm{Fe}}_{1.6}{\rm{Se}}_2\): Determination of the superconducting phase as iron vacancy-free \({\rm{Rb}}_{0.3}{\rm{Fe}}_2{\rm{Se}}_2\). Physical Review Letters, 108, 237002.

    Article  ADS  Google Scholar 

  101. Wang, Z., et al. (2011). Microstructure and ordering of iron vacancies in the superconductor system \({\rm{K}}_y{\rm{Fe}}_x{\rm{Se}}_2\) as seen via transmission electron microscopy. Physical Review B, 83, 140505.

    Article  ADS  Google Scholar 

  102. Friemel, G., et al. (2012). Reciprocal-space structure and dispersion of the magnetic resonant mode in the superconducting phase of \({\rm{Rb}}_x{\rm{Fe}}_{2-y}{\rm{Se}}_2\) single crystals. Physical Review B, 85, 140511.

    Article  ADS  Google Scholar 

  103. Maier, T. A., Graser, S., Hirschfeld, P. J., & Scalapino, D. J. (2011). \(d\)-wave pairing from spin fluctuations in the \({\rm{K}}_x{\rm{Fe}}_{2-y}{\rm{Se}}_2\) superconductors. Physical Review B, 83, 100515.

    Article  ADS  Google Scholar 

  104. Hillenbrand, R., Taubner, T., & Keilmann, F. (2002). Phonon-enhanced light-matter interaction at the nanometre scale. Nature, 418, 159–162.

    Article  ADS  Google Scholar 

  105. Keilmann, F., & Hillenbrand, R. (2008). Nano-optics and near-field optical microscopy. London: Artech House.

    Google Scholar 

  106. Huth, F., Schnell, M., Wittborn, J., Ocelic, N., & Hillenbrand, R. (2011). Infrared-spectroscopic nanoimaging with a thermal source. Nature Materials, 10, 352–356.

    Article  ADS  Google Scholar 

  107. Prokscha, T., et al. (2008). The new \(\mu {\rm{E}}4\) beam at PSI: A hybrid-type large acceptance channel for the generation of a high intensity surface-muon beam. Nuclear Instruments and Methods in Physics Research Section A, 595, 317–331.

    Article  ADS  Google Scholar 

  108. Boris, A. V., et al. (2011). Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science, 332, 937–940.

    Article  ADS  Google Scholar 

  109. Ocelic, N., Huber, A., & Hillenbrand, R. (2006). Pseudoheterodyne detection for background-free near-field spectroscopy. Applied Physics Letters, 89, 101124.

    Article  ADS  Google Scholar 

  110. Ryan, D. H., et al. (2011). \(^{57}{\rm {Fe}}\) mössbauer study of magnetic ordering in superconducting \({\rm {K}}_{0.80}{\rm {Fe}}_{1.76}{\rm {Se}}_{2.00}\) single crystals. Physical Review B, 83, 104526.

    Google Scholar 

  111. Cvitkovic, A., Ocelic, N., & Hillenbrand, R. (2007). Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Optics Express, 15, 8550–8565.

    Article  ADS  Google Scholar 

  112. Morenzoni, E., et al. (2002). Implantation studies of keV positive muons in thin metallic layers. Nuclear Instruments and Methods in Physics Research B, 192, 254–266.

    Article  ADS  Google Scholar 

  113. Clem, J. R. (1991). Two-dimensional vortices in a stack of thin superconducting films: A model for high-temperature superconducting multilayers. Physical Review B, 43, 7837–7846.

    Article  ADS  Google Scholar 

  114. Niedermayer, C., et al. (1999). Direct observation of a flux line lattice field distribution across an \({\rm{YBa}}_2{\rm{Cu}}_3{\rm{O}}_{7-\delta }\) surface by low energy muons. Physical Review Letters, 83, 3932.

    Article  ADS  Google Scholar 

  115. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y., & Uchida, S. (1995). Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature, 375, 561–563.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliaksei Charnukha .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Charnukha, A. (2014). Results and Discussion. In: Charge Dynamics in 122 Iron-Based Superconductors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01192-9_4

Download citation

Publish with us

Policies and ethics