Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 596 Accesses

Abstract

Observation of the outside world is one of the most ancient human activities. All the civilizations, or at least those of which records remain, observed, analyzed, and inferred. Human intellect possesses the amazing power to observe the outside world and distill these observations in a purely abstract way into a set of logical inferences that capture the world’s essence and explain its workings.

If I have seen further it is by standing on the shoulders of giants.

—Isaac Newton, Letter to Robert Hooke

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(s\)-wave superconductors show zero conductivity below \(2\Delta \), which implies unity reflectance. Therefore, no transmission can be observed in single-crystalline superconducting samples with a sufficiently large superconducting gap at THz frequencies.

References

  1. Hawking, S. W. (1974). Black hole explosions? Nature, 248, 30–31.

    Article  ADS  Google Scholar 

  2. Ginzburg, V., & Landau, L. (1950). On the theory of superconductivity. Zh. Eksp. Teor. Fiz., 20, 1064.

    Google Scholar 

  3. Landau, L. D. (1965). Collected papers, 546 Oxord: Pergamon Press.

    Google Scholar 

  4. Cooper, L. N. (1956). Bound electron pairs in a degenerate Fermi gas. Physical Review, 104, 1189–1190.

    Article  ADS  MATH  Google Scholar 

  5. Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Microscopic theory of superconductivity. Physical Review, 106, 162–164.

    Article  MathSciNet  ADS  Google Scholar 

  6. Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Theory of superconductivity. Physical Review, 108, 1175–1204.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Gor’kov, L. (1959). Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity. Soviet Physics JETP, 9, 1364–1367.

    MathSciNet  MATH  Google Scholar 

  8. Bednorz, J. G., & Müller, K. A. (1986). Possible high-\(T_{{\rm {c}}}\) superconductivity in the Ba-La-Cu-O system. Zeitschrift fur Physik B, 64, 189–193.

    Article  ADS  Google Scholar 

  9. Eliashberg, G. (1960). Interactions between electrons and lattice vibrations in a superconductor. Soviet Physics JETP, 11, 696.

    MathSciNet  Google Scholar 

  10. Vaknin, D., et al. (1987). Antiferromagnetism in \({\rm {La}}_2{\rm {CuO}}_{4-y}\). Physical Review Letters, 58, 2802–2805.

    Article  ADS  Google Scholar 

  11. Freltoft, T., et al. (1987). Antiferromagnetism and oxygen deficiency in single-crystal \({\rm {La}}_2{\rm {CuO}}_{4-\delta }\). Physical Review B, 36, 826–828.

    Article  ADS  Google Scholar 

  12. Pickett, W. E. (1989). Electronic structure of the high-temperature oxide superconductors. Reviews of Modern Physics, 61, 433–512.

    Article  ADS  Google Scholar 

  13. Alloul, H., Ohno, T., & Mendels, P. (1989). \(^{89}{\rm {Y}}\) NMR evidence for a Fermi-liquid behavior in \({\rm {YBa}}_2{\rm {Cu}}_3{\rm {O}}_{6+x}\). Physical Review Letters, 63, 1700–1703.

    Article  ADS  Google Scholar 

  14. Rossat-Mignod, J., et al. (1991). Investigation of the spin dynamics in \({\rm {YBa}}_2{\rm {Cu}}_3{\rm {O}}_{6+x}\) by inelastic neutron scattering. Physics B, 169, 58–65.

    Article  ADS  Google Scholar 

  15. Rotter, L. D., et al. (1991). Dependence of the infrared properties of single-domain \({\rm {YBa}}_2{\rm {Cu}}_3{\rm {O}}_{7-y}\) on oxygen content. Physical Review Letters, 67, 2741–2744.

    Article  ADS  Google Scholar 

  16. Tallon, J. L., Cooper, J. R., de Silva, P. S. I. P. N., Williams, G. V. M., & Loram, J. W. (1995). Thermoelectric power: A simple, instructive probe of high-\(T_{{\rm {c}}}\) superconductors. Physical Review Letters, 75, 4114–4117.

    Article  ADS  Google Scholar 

  17. Loeser, A. G., et al. (1996). Excitation gap in the normal state of underdoped \({\rm {Bi}}_2{\rm {Sr}}_2{\text{ CaCu }}_2{\rm {O}}_{8+\delta }\). Science, 273, 325–329.

    Article  ADS  Google Scholar 

  18. Ghiringhelli, G., et al. (2012). Long-range incommensurate charge fluctuations in \(({\rm {Y}},{\rm {Nd}}){\rm {Ba}}_2{\rm {Cu}}_3{\rm {O}}_{6+x}\). Science, 337, 821–825.

    Article  ADS  Google Scholar 

  19. Achkar, A. J., et al. (2012). Distinct charge orders in the planes and chains of ortho-III-ordered \({\rm {YBa}}_2{\rm {Cu}}_3{\rm {O}}_{6+\delta }\) superconductors identified by resonant elastic X-ray scattering. Physical Review Letters, 109, 167001.

    Article  ADS  Google Scholar 

  20. Kohsaka, Y., et al. (2012). Visualization of the emergence of the pseudogap state and the evolution to superconductivity in a lightly hole-doped Mott insulator. Nature Physics, 8, 534–538.

    Article  ADS  Google Scholar 

  21. Basov, D. N., & Chubukov, A. V. (2011). Manifesto for a higher \(T_{{\rm {c}}}\). Nature Physics, 7, 272–276.

    Article  ADS  Google Scholar 

  22. Scalapino, D. J., Loh, E., & Hirsch, J. E. (1986). \(d\)-wave pairing near a spin-density-wave instability. Physical Review B, 34, 8190–8192.

    Article  ADS  Google Scholar 

  23. Tinkham, M. (1995). Introduction to superconductivity (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  24. Kamihara, Y., et al. (2006). Iron-based layered superconductor: LaOFeP. Journal of the American Chemical Society, 128, 10012–10013.

    Article  Google Scholar 

  25. Zhi-An, R., et al. (2008). Superconductivity at 55 K in iron-based F-doped layered quaternary compound \({\rm {Sm}}[{\rm {O}}_{1-x}{\rm {F}}_x]{\rm {FeAs}}\). Chinese Physics Letters, 25, 2215.

    Article  ADS  Google Scholar 

  26. Hu, J., & Hao, N. (2012). \({S}_{4}\) symmetric microscopic model for iron-based superconductors. Physical Review X, 2, 021009.

    Article  ADS  Google Scholar 

  27. Ma, T., Lin, H.-Q., & Hu, J. (2013). Quantum Monte-Carlo study of a dominant \(s\)-wave pairing symmetry in iron-based superconductors. Physical Review Letters, 110, 107002.

    Article  ADS  Google Scholar 

  28. Hao, N., Wang, Y. & Hu, J. (2012). Oriented gap opening in the magnetically ordered state of iron-pnicitides: an impact of intrinsic unit cell doubling on the Fe square lattice by As atoms. arXiv:1207.6798 (unpublished).

    Google Scholar 

  29. Christianson, A. D., et al. (2008). Unconventional superconductivity in \({\rm {Ba}}_{0.6}{\rm {K}}_{0.4}{\rm {Fe}}_2{\rm {As}}_2\) from inelastic neutron scattering. Nature, 456, 930.

    Article  ADS  Google Scholar 

  30. Evtushinsky, D. V., et al. (2009). Momentum dependence of the superconducting gap in \({\rm {Ba}}_{1-x}{\rm {K}}_x{\rm {Fe}}_2{\rm {As}}_2\). Physical Review B, 79, 054517.

    Article  ADS  Google Scholar 

  31. Xu, Y.-M. et al. (2011). Observation of a ubiquitous three-dimensional superconducting gap function in optimally doped \({\rm {Ba}}_{0.6}{\rm {K}}_{0.4}{\rm {Fe}}_2{\rm {As}}_2\). Nature Physics, 7, 198.

    Google Scholar 

  32. Evtushinsky, D. V. et al. (2012). Strong pairing at iron \(3{\rm {d}}_{\rm {xz, yz}}\) orbitals in hole-doped \({\text{ BaFe }}_2{\rm {As}}_2\). arXiv:1204.2432 (unpublished).

    Google Scholar 

  33. Hanaguri, T., Niitaka, S., Kuroki, K., & Takagi, H. (2010). Unconventional \(s\)-wave superconductivity in Fe(Se,Te). Science, 328, 474.

    Article  ADS  Google Scholar 

  34. Paglione, J., & Greene, R. L. (2010). High-temperature superconductivity in iron-based materials. Nature Physics, 6, 645.

    Article  ADS  Google Scholar 

  35. Moon, S. J., et al. (2012). Infrared measurement of the pseudogap of P-doped and Co-doped high-temperature \({\text{ BaFe }}_2{\rm {As}}_2\) superconductors. Physical Review Letters, 109, 027006.

    Article  ADS  Google Scholar 

  36. Chu, J.-H., et al. (2010). In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science, 329, 824–826.

    Article  ADS  Google Scholar 

  37. Chu, J.-H., Kuo, H.-H., Analytis, J. G., & Fisher, I. R. (2012). Divergent nematic susceptibility in an iron arsenide superconductor. Science, 337, 710–712.

    Article  ADS  Google Scholar 

  38. Kasahara, S., et al. (2012). Electronic nematicity above the structural and superconducting transition in \({\text{ BaFe }}_2({\rm {As}}_{1-x}{\rm {P}}_x)_2\). Nature, 486, 382–385.

    Article  ADS  Google Scholar 

  39. Kuo, H.-H., et al. (2012). Magnetoelastically coupled structural, magnetic, and superconducting order parameters in \({\text{ BaFe }}_2({\rm {As}}_{1-x}{\rm {P}}_x)_2\). Physical Review B, 86, 134507.

    Article  ADS  Google Scholar 

  40. Wang, A. F., et al. (2013). A crossover in the phase diagram of \({\text{ NaFe }}_{1-x}{\rm {Co}}_x{\rm {As}}\) determined by electronic transport measurements. New Journal of Physics, 15, 043048.

    Article  ADS  Google Scholar 

  41. Hashimoto, K., et al. (2012). A sharp peak of the zero-temperature penetration depth at optimal composition in \({\text{ BaFe }}_2({\rm {As}}_{1-x}{\rm {P}}_x)_2\). Science, 336, 1554–1557.

    Article  ADS  Google Scholar 

  42. Arsenijević, S. et al. (2012). Spin fluctuation driven enhancement of thermopower near the quantum critical point in \({\rm {Ba}}({\rm {Fe}}_{1-x}{\rm {Co}}_x)_2{\rm {As}}_2\). arXiv:1206.2938 (unpublished).

    Google Scholar 

  43. Kitagawa, S., Ishida, K., Nakamura, T., Matoba, M., & Kamihara, Y. (2012). Ferromagnetic quantum critical point in heavy-fermion iron oxypnictide \({\rm {Ce}}({\rm {Ru}}_{1-x}{\rm {Fe}}_x){\rm {PO}}\). Physical Review Letters, 109, 227004.

    Article  ADS  Google Scholar 

  44. Logvenov, G., Gozar, A., & Bozovic, I. (2009). High-temperature superconductivity in a single copper-oxygen plane. Science, 326, 699–702.

    Article  ADS  Google Scholar 

  45. Mattis, D. C., & Bardeen, J. (1958). Theory of the anomalous skin effect in normal and superconducting metals. Physical Review, 111, 412–417.

    Article  ADS  MATH  Google Scholar 

  46. Zimmermann, W., Brandt, E., Bauer, M., Seider, E., & Genzel, L. (1991). Optical conductivity of BCS superconductors with arbitrary purity. Physical C, 183, 99.

    Article  ADS  Google Scholar 

  47. Nam, S. B. (1967). Theory of electromagnetic properties of superconducting and normal systems. I Physical Review, 156, 470.

    Article  ADS  Google Scholar 

  48. Nam, S. B. (1967). Theory of electromagnetic properties of strong-coupling and impure superconductors. II. Physical Review, 156, 487.

    Article  ADS  Google Scholar 

  49. Carbotte, J. P. (1990). Properties of boson-exchange superconductors. Review Modern Physics, 62, 1027–1157.

    Article  ADS  Google Scholar 

  50. Choy, T. C. (1999). Effective medium theory : principles and applications. Oxford: Oxford University Press.

    Google Scholar 

  51. Evtushinsky, D. V., et al. (2009). Momentum-resolved superconducting gap in the bulk of \({\rm {Ba}}_{1-x}{\rm {K}}_x{\rm {Fe}}_2{\rm {As}}_2\) from combined ARPES and \(\mu \)SR measurements. New Journal of Physics, 11, 055069.

    Article  ADS  Google Scholar 

  52. Popovich, P., et al. (2010). Specific heat measurements of \({\rm {Ba}}_{0.68}{\rm {K}}_{0.32}{\rm {Fe}}_2{\rm {As}}_2\) single crystals: evidence for a multiband strong-coupling superconducting state. Physical Review Letters, 105, 027003.

    Article  ADS  Google Scholar 

  53. Shan, L., et al. (2011). Evidence of multiple nodeless energy gaps in superconducting \({\rm {Ba}}_{0.6}{\rm {K}}_{0.4}{\rm {Fe}}_2{\rm {As}}_2\) single crystals from scanning tunneling spectroscopy. Physical Review B, 83, 060510.

    Article  ADS  Google Scholar 

  54. Shan, L. et al. (2011). Observation of ordered vortices with Andreev bound states in \({\rm {Ba}}_{0.6}{\rm {K}}_{0.4}{\rm {Fe}}_2{\rm {As}}_2\). Nature Physics, 7, 325.

    Google Scholar 

  55. Shan, L., et al. (2012). Evidence of a spin resonance mode in the iron-based superconductor \({\rm {Ba}}_{0.6}{\rm {K}}_{0.4}{\rm {Fe}}_2{\rm {As}}_2\) from scanning tunneling spectroscopy. Physical Review Letters, 108, 227002.

    Article  ADS  Google Scholar 

  56. Zhang, C. et al. (2011). Neutron scattering studies of spin excitations in hole-doped \({\rm {Ba}}_{0.67}{\rm {K}}_{0.33}{\rm {Fe}}_2{\rm {As}}_2\) superconductor. Science Report, 1, 115.

    Google Scholar 

  57. Bacsa, J., et al. (2011). Cation vacancy order in the \({\rm {K}}_{0.8+x}{\rm {Fe}}_{1.6-y}{\rm {Se}}_2\) system: Five-fold cell expansion accommodates 20% tetrahedral vacancies. Chemical Sciences, 2, 1054.

    Google Scholar 

  58. Yan, X.-W., Gao, M., Lu, Z.-Y., & Xiang, T. (2011). Ternary iron selenide \({\rm {K}}_{0.8}{\rm {Fe}}_{1.6}{\rm {Se}}_2\) is an antiferromagnetic semiconductor. Physical Review B, 83, 233205.

    Article  ADS  Google Scholar 

  59. Wu, D., et al. (2009). Effects of magnetic ordering on dynamical conductivity: Optical investigations of \({\text{ EuFe }}_2{\rm {As}}_2\) single crystals. Physical Review B, 79, 155103.

    Article  ADS  Google Scholar 

  60. Nakajima, M., et al. (2010). Evolution of the optical spectrum with doping in \({\rm {Ba}}({\rm {Fe}}_{1-x}{\rm {Co}}_x)_2{\rm {As}}_2\). Physical Review B, 81, 104528.

    Article  ADS  Google Scholar 

  61. Barišić, N., et al. (2010). Electrodynamics of electron-doped iron pnictide superconductors: Normal-state properties. Physical Review B, 82, 054518.

    Article  ADS  Google Scholar 

  62. Cheng, B., et al. (2012). Electronic properties of 3d transitional metal pnictides: A comparative study by optical spectroscopy. Physical Review B, 86, 134503.

    Article  ADS  Google Scholar 

  63. Wang, C. N., et al. (2012). Macroscopic phase segregation in superconducting \({\rm {K}}_{0.73}{\rm {Fe}}_{1.67}{\rm {Se}}_2\) as seen by muon spin rotation and infrared spectroscopy. Physical Review B, 85, 214503.

    Article  ADS  Google Scholar 

  64. Homes, C. C., Xu, Z. J., Wen, J. S., & Gu, G. D. (2012). Effective medium approximation and the complex optical properties of the inhomogeneous superconductor \({\rm {K}}_{0.8}{\rm {Fe}}_{2-y}{\rm {Se}}_2\). Physical Review B, 86, 144530.

    Article  ADS  Google Scholar 

  65. Friemel, G., et al. (2012). Reciprocal-space structure and dispersion of the magnetic resonant mode in the superconducting phase of \({\rm {Rb}}_x{\rm {Fe}}_{2-y}{\rm {Se}}_2\) single crystals. Physical Review B, 85, 140511.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliaksei Charnukha .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Charnukha, A. (2014). Introduction. In: Charge Dynamics in 122 Iron-Based Superconductors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01192-9_1

Download citation

Publish with us

Policies and ethics