Skip to main content

Gas Separation Membrane Materials and Structures

  • Chapter
Gas Separation Membranes

Abstract

A membrane is a layer of material which serves as a selective barrier between two phases and is impermeable to specific particles, molecules, or substances when exposed to the action of a driving force. Some components are allowed passage by the membrane into a permeate stream, whereas others are retained by it and accumulate in the retentate stream. Membranes can be of various thicknesses, with homogeneous or heterogeneous structures. Membrane can also be classified according to their pore diameter. There are three different types of pore sizes based on the IUPAC (International Union of Pure and Applied Chemistry) classification: microporous (d p  < 2 nm), mesoporous (2 nm < d p  < 50 nm), and macroporous (d p  > 50 nm) [1, 2]. Membranes can be neutral or charged, and the transport through a membrane can be active or passive. The latter can be facilitated by pressure, concentration, chemical or electrical gradients. Membranes can be generally classified into synthetic membranes and biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    CAS  Google Scholar 

  2. Rouquerol JJ, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem 66:1739–1758

    CAS  Google Scholar 

  3. Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185

    CAS  Google Scholar 

  4. Aoki T (1999) Macromolecular design of permselective membranes. Prog Polym Sci 24:951–993

    CAS  Google Scholar 

  5. Schmeling N, Konietzny R, Sieffert D, Rölling P, Staudt C (2010) Functionalized copolyimide membranes for gaseous and liquid mixtures. Beiltein J Org Chem 6:789–800

    Google Scholar 

  6. Budd PM, McKeown NB (2010) High permeable polymers for gas separation membranes. Polym Chem 1:63–68

    CAS  Google Scholar 

  7. Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49

    CAS  Google Scholar 

  8. Gantzel PK, Merten U (1970) Gas separations with high flux cellulose acetate membranes. Ind Eng Chem Process Des Dev 9:331–332

    CAS  Google Scholar 

  9. Nunes SP, Pinemann K-V (2001) Membrane materials and membrane preparation. In: Nunes SP, Pinemann K-V (eds) Membrane technology in chemical industry. Wiley-VCH, Weinheim, FRG, pp 1–67

    Google Scholar 

  10. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48:4638–4663

    CAS  Google Scholar 

  11. Reddy BSR, Senthilkumar U (2003) Prospects of siloxane membrane technology for gas separation—a review. J Sci Ind Res 62:666–677

    CAS  Google Scholar 

  12. Achalpurkar MP, Kharul UK, Lohokare HR, Karadkar PB (2007) Gas permeation in amine functionalized silicon rubber membranes. Sep Purif Technol 57:304–313

    CAS  Google Scholar 

  13. Stern SA, Shah VM, Hardy BJ (1987) Structure-permeability relationships in silicone polymers. J Polym Sci 25:1263–1298

    CAS  Google Scholar 

  14. Furuzono T, Seki K, Kishida A, Ohshige T-A, Waki K, Maruyama I, Akashi M (1996) Novel functional polymers: poly(dimethylsiloxane)-polyamide multiblock copolymer. III. Synthesis and surface properties of disiloxane-aromatic polyamide multiblock copolymer. J Appl Polym Sci 59:1059–1065

    CAS  Google Scholar 

  15. Loeb S, Sourirajan S (1960) Sea water demineralization by means of a semipermeable membrane. Sea Water Research Report 60-60. UCLA, Department of Engineering

    Google Scholar 

  16. Dortmundt D, Doshi K (1999) Recent developments in CO2 removal membrane technology. UOP LLC, Des Plaines, IL

    Google Scholar 

  17. White L (2010) Evolution of natural gas treatment with membrane systems. In: Yampolskii Y, Freeman B (eds) Membrane gas separation. John Wiley & Sons, Ltd, Chichester, UK

    Google Scholar 

  18. Puleo AC, Paul DR, Kelley SS (1989) The effect of degree of acetylation on gas sorption and transport behaviour in cellulose acetate. J Membr Sci 47:301–332

    CAS  Google Scholar 

  19. Scholes CA, Stevens GW, Kentish SE (2012) Membrane gas separation applications in natural gas processing. Fuel 96:15–28

    CAS  Google Scholar 

  20. Minhas BS, Matsuura T, Sourirajan S (1987) Formation of asymmetric cellulose acetate membranes for the separation of carbon dioxide–methane gas mixtures. Ind Eng Chem Res 26:2344–2348

    CAS  Google Scholar 

  21. Houde AY, Krishnakumar B, Charati SG, Stern SA (1996) Permeability of dense (homogeneous) cellulose acetate membranes to methane, carbon dioxide, and their mixtures at elevated pressures. J Appl Polym Sci 62:2181–2192

    CAS  Google Scholar 

  22. Donohue MD, Minhas BS, Lee SY (1989) Permeation behaviour of carbon dioxide–methane mixtures in cellulose acetate membranes. J Membr Sci 42:197–214

    CAS  Google Scholar 

  23. Houde AY, Stern SA (1997) Solubility and diffusivity of light gases in ethyl cellulose at elevated pressures: effects of ethoxy content. J Membr Sci 127:171–183

    CAS  Google Scholar 

  24. Park J, Steward MG (1968) Film-forming cellulose compounds. British Patent 1120373A, 17 June 1968

    Google Scholar 

  25. Cooley TE, Coady AB (1978) Removal of H2S and/or CO2 from a light hydrocarbon stream by use of gas permeable membrane. US Patent 4130403A, 19 Dec 1978

    Google Scholar 

  26. Sharma AK (1985) Fluorinated cellulose acetate polymers. US Patent 4549012A, 22 Oct 1985

    Google Scholar 

  27. Rahman SA, Ismail AF, Abdul-Rahman WAW (2001) Formation of cellulose acetate membrane for gas separation from binary dope system: effect of shear rate. Paper presented at Regional Symposium on Membrane Science and Technology, Puteri Pan Pacific Hotel, Johor Bharu, Malaysia, 21–25 Apr 2004

    Google Scholar 

  28. Vorotyntsev IV, Drozdov PN, Karyakin NV (2006) Ammonia permeability of a cellulose acetate membrane. Inorg Mater 42:231–235

    CAS  Google Scholar 

  29. Tanioka A, Ishikawa K, Kakuta A, Kuramoto M, Ohno M (1984) Mixed gas separation by fine porous freeze-dried cellulose acetate membrane. J Appl Polym Sci 29:583–594

    CAS  Google Scholar 

  30. Kim W, Lee JS, Bucknall DG, Koros WJ, Nair S (2013) Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations. J Membr Sci 441:129–136

    CAS  Google Scholar 

  31. Scholes CA, Kentish SE, Stevens GW (2008) Separation through polymeric membrane systems for flue gas applications. Recent patents on chemical engineering 1:52–66

    Google Scholar 

  32. Ward WJ, Browall WR, Salemme RM (1976) Ultrathin silicon/polycarbonate membranes for gas separation processes. J Membr Sci 1:99–108

    CAS  Google Scholar 

  33. Acharya NK, Yadav PK, Vijay YK (2004) Study of temperature dependent gas permeability of polycarbonate membrane. Ind J Pure Appl Phys 43:179–181

    Google Scholar 

  34. Vijay YK, Acharya NK, Wate S, Avasthi DK (2004) Characterization of track etched membrane by gas separation. Int J Hydrogen Energy 29:515–519

    CAS  Google Scholar 

  35. Fu YJ, Chen JT, Chen CC, Liao KS, Hu CC, Lee KR, Lai JY (2013) Characterization of morphology and gas separation performance of dry-cast polycarbonate membranes. Polym Eng Sci 53:1623–1630

    CAS  Google Scholar 

  36. Hacarlioglu P, Toppare L, Yilmaz L (2003) Polycarbonate-polypyrrole mixed matrix gas separation membranes. J Membr Sci 225:51–62

    CAS  Google Scholar 

  37. Sen D, Kalipecilar H, Yilmaz L (2006) Development of zeolite filled polycarbonate mixed matrix gas separation membranes. Desalination 200:222–224

    CAS  Google Scholar 

  38. López-González M, Saiz E, Guzmán J, Riande E (2001) Experimental and simulation studies on the transport of gaseous diatomic molecules in polycarbonate membranes. J Chem Phys 115:6728–6736

    Google Scholar 

  39. Yampol’skii YP, Bespalova NB, Finkel’shtein ES, Bondar VI, Papov AV (1994) Synthesis, gas permeability, and gas sorption properties of fluorine-containing norbornene polymers. Macromolecules 27:2872–2878

    Google Scholar 

  40. Tetsuka H, Hagiwara M, Kaita S (2011) Addition-type poly(norbornene)s with siloxane substituents: synthesis, properties and nanoporous membrane. Polym J 43:97–100

    CAS  Google Scholar 

  41. Tetsuka H, Isobe K, Hagiwara M (2009) Synthesis and properties of addition-type poly(norbone)s with siloxane substituents. Polym J 41:643–649

    CAS  Google Scholar 

  42. Dorkenoo KD, Pfrommm PH, Rezac ME (1998) Gas transport properties of a series of high T g polynorbornenes with aliphatic pendant groups. Polym Sci B Polym Phys 36:797–803

    CAS  Google Scholar 

  43. Deniz S (2006) Effect of nonsolvent type on the surface morphology and preparation of microporous membranes from blends of poly(phenylene oxide) and poly(p-phenylene oxide sulfone) or polysulfone. Desalination 200:52–54

    CAS  Google Scholar 

  44. Paul DR, Yampoliskii Y (eds) (1994) Polymer gas separation membranes. CRC Press, Boca Raton, FL

    Google Scholar 

  45. Khulbe KC, Matsuura T, Lamarche G, Kim HJ (1997) The morphology characterization and performance of dense PPO membranes for gas separation. J Membr Sci 135:211–223

    CAS  Google Scholar 

  46. Hamad F, Matsuura T (2005) Performance of gas separation membranes made from brominated high molecular weight poly(2,4-dimethyl-1,6-phenylene oxide). J Membr Sci 253:183–189

    CAS  Google Scholar 

  47. Khulbe KC, Chowdhury G, Kruczek B, Vujosevic R, Matsuura T, Lamarche G (1997) Characterization of the PPO dense membrane prepared at different temperatures by ESR, atomic force microscope and gas permeation. J Membr Sci 126:115–122

    CAS  Google Scholar 

  48. Hamad F, Khulbe KC, Matsuura T (2002) Characterization of gas separation membranes prepared from brominated poly(phenylene oxide) by infrared spectroscopy. Desalination 148:369–375

    CAS  Google Scholar 

  49. Yu B, Cong H, Zhao X (2012) Hybrid brominated sulfonated poly(2,6-diphenyl-1,4-phenylene oxide) and SiO2 nanocomposite membranes for CO2/N2 separation. Prog Nat Sci Mater Int 22:661–667

    Google Scholar 

  50. Langsam M (1996) Polyimides for gas separation. In: Ghosh MK, Mittal KL (eds) Polyimides: fundamental and application. Mercel Dekker, New York

    Google Scholar 

  51. Yoon JC, Park HB (2011) Gas separation properties of triptycene-based polyimide membranes. In: Escobar IC, Bruggen BV (eds) Modern applications in membrane science and technology. ACS symposium series, vol 1078. Oxford, Washington, DC; American Chemical Society, New York, pp 107–128

    Google Scholar 

  52. Kim KJ, Park SH, So WW, Ahn DJ, Moon SJ (2003) CO2 separation performances of composite membranes of 6FDA-based polyimides with a polar group. J Membr Sci 211:41–49

    CAS  Google Scholar 

  53. Li DF, Chung TS, Wang R, Liu Y (2002) Fabrication of fluoropolyimide/polyethersulfone (PES) dual-layer asymmetric hollow fiber membranes for gas separation. J Membr Sci 198:211–223

    CAS  Google Scholar 

  54. Tin PS, Chung TS, Liu Y, Wang R, Liu SL, Pramoda KP (2003) Effects of cross-linking modification of Matrimid membranes. J Membr Sci 225:77–90

    CAS  Google Scholar 

  55. Kapantaidakis GC, Koops GH, Wessling M, Kaldis SP, Sakellaropoulos GP (2003) CO2 plasticization of polyethersulfone/polyimide gas-separation membranes. AIChE J 49:1702–1711

    CAS  Google Scholar 

  56. Bos A, Punt I, Wessling M, Strathmann H (1998) Suppression of CO2-plasticization by semi interpenetrating polymer network formation. J Polym Sci B Polym Phys 36:1547–1556

    CAS  Google Scholar 

  57. Faiz R, Li K (2012) Polymeric membranes for light olefin/paraffin separation. Desalination 287:82–97

    CAS  Google Scholar 

  58. Dong G, Li H, Chen V (2010) Factors affect defect-free Matrimid® hollow fiber gas separation performance in natural gas purification. J Membr Sci 353:17–27

    CAS  Google Scholar 

  59. Peng N, Chung TS (2008) The effects of spinneret dimension and hollow fiber dimension on gas separation performance of ultra-thin defect-free Torlon® hollow fiber membrane. J Membr Sci 310:455–465

    CAS  Google Scholar 

  60. Chung TS, Shao L, Tin PS (2006) Surface modification of polyimide membranes by diamines for H2 and CO2 separation. Macromol Rapid Commun 27:998–1003

    CAS  Google Scholar 

  61. Liu Y, Wang R, Chung TS (2001) Chemical cross-linking modification of polyimide films for gas separation. J Membr Sci 189:231–239

    CAS  Google Scholar 

  62. Wang L, Cao Y, Zhou M, Qiu X, Yuan Q (2009) Synthesis, characterization, and gas permeation properties of 6FDA-2,6-DAT/mPDA copolyimides. Front Chem Chin 4:215–221

    Google Scholar 

  63. Barsema JN, Kapantaidakis GC, van der Vegt NFA, Koops GH, Wessling M (2003) Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide. J Membr Sci 216:195–205

    CAS  Google Scholar 

  64. Kneifel K, Peinemann KV (1992) Preparation of hollow fiber membranes from polyetherimide for gas separation. J Membr Sci 65:295–307

    CAS  Google Scholar 

  65. Wang D, Teo WK, Li K (2002) Permeation of H2, N2, CH4, C2H6 and C3H8 through asymmetric poly(etherimide) hollow-fiber membrane. J Appl Polym Sci 86:698–702

    CAS  Google Scholar 

  66. Wang D, Li K, Teo WK (1998) Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation. J Membr Sci 138:193–201

    CAS  Google Scholar 

  67. Wang D, Li K, Teo WK (2002) Preparation of asymmetric polyetherimide hollow fibre membrane with high gas selectivity. J Membr Sci 208:419–426

    CAS  Google Scholar 

  68. Pientka Z, Brožová L, Bleha M, Puri P (2003) Preparation and characterization of ultrathin polymeric films. J Membr Sci 214:157–161

    CAS  Google Scholar 

  69. Bruma M, Hamciuc E, Yampolskii Y, Alentiev A, Ronova IA, Rojkov EM (2004) Polyetherimides for gas separation membranes. Mol Cryst Liq Cryst 418:11–19

    CAS  Google Scholar 

  70. Squire EN (1988) Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole. EP0645406 B1, 11 Apr 2001

    Google Scholar 

  71. Markel TC, Pinnau I, Prabhakar R, Freeman B (2006) Gas and transport properties of perfluoropolymers. In: Yampolskii Y, Pinnau I, Freeman B (eds) Materials science of membrane for gas and vapor separation. John Wiley & Sons, Chichester, UK

    Google Scholar 

  72. Pinnau I, Toy LG (1996) Gas and vapour transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole/tetrafluoroethylene. J Membr Sci 109:125–133

    CAS  Google Scholar 

  73. Alentiev AY, Yampolskii YP, Shantarovich VP, Nemser SM, Plate NA (1997) High transport parameters and free volume of perfluoroxole copolymers. J Membr Sci 126:123–132

    CAS  Google Scholar 

  74. Nemser SM, Roman IC (1991) Polymer of perfluoro-2,2-dimethyl-1,3-dioxole membranes. US Patent 5051114A, 24 Sept 1991

    Google Scholar 

  75. Masaru N, Isamu K, Kazuya O, Gen K, Masashi M, Shunichi S, Motoi K (1990) Novel fluorine-containing cyclic polymer. US Patent 4,897,457, 30 Jan 1990

    Google Scholar 

  76. Avery DL, Shanbhag PV (2002) Designed selectivity gas permeable membranes. US Patent 6406517B1, 18 June 2002

    Google Scholar 

  77. Tokarev A, Friess K, Machkova J, Sipek M, Yamapolskii Y (2006) Sorption and diffusion of organic vapors in amorphous Teflon AF2400. J Polym Sci B Polym Phys 44:832–844

    CAS  Google Scholar 

  78. Jansen JC, Macchione M, Drioli E (2005) High flux asymmetric gas separation membranes of modified poly(ether ether ketone) prepared by the dry phase inversion technique. J Membr Sci 255:167–180

    CAS  Google Scholar 

  79. Galland G, Lam TM (1993) Permeability and diffusion of gases in segmented polyurethanes: structure–properties relations. J Appl Polym Sci 50:1041–1058

    CAS  Google Scholar 

  80. Chen SH, Yu KC, Houng SL, Lai JY (2000) Gas transport properties of HTPB based polyurethane/cosalen membrane. J Membr Sci 173:99–106

    CAS  Google Scholar 

  81. Sadeghi M, Semsarzadeh MA, Barikani M, Chenar MP (2011) Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes. J Membr Sci 376:188–195

    CAS  Google Scholar 

  82. Talakesh MM, Morteza S, Chenar MP, Afsaneh K (2012) Gas separation properties of poly(ethylene glycol)/poly(tetramethylene glycol) based polyurethane membranes. J Membr Sci 415–416:469–477

    Google Scholar 

  83. Liang W, Martin CR (1991) Gas transport in electronically conductive polymers. Chem Mater 3:390–391

    CAS  Google Scholar 

  84. Martin CR, Liang W, Menon V, Parthasarathy R, Parthasarathy A (1993) Electronically conductive polymers as chemically-selective layers in membrane-based separations. Synth Met 55–57:3766–3773

    Google Scholar 

  85. Anderson MR, Mattes BR, Reiss H, Kaner RB (1991) Conjugated polymer films for gas separations. Science 252:1412–1415

    CAS  Google Scholar 

  86. Sairam M, Nataraj SK, Aminabhavi TM, Roy M, Madhusoodana CD (2006) Polyaniline membranes for separation and purification of gases, liquids, and electrolyte solutions. Sep Purif Rev 35:249–283

    CAS  Google Scholar 

  87. Blinova NV, Frantisek S (2012) Functionalized polyaniline-based composite membranes with vastly improved performance for separation of carbon dioxide from methane. J Membr Sci 423–424:514–521

    Google Scholar 

  88. Kuwabata S, Martin CR (1994) Investigation of the gas-transport properties of polyaniline. J Membr Sci 91:1–12

    CAS  Google Scholar 

  89. Lee YM, Ha SY, Lee KY, Suh DH, Hong SY (1999) Gas separation through conductive polymer membranes. 2. Polyaniline membranes with high oxygen selectivity. Ind Eng Chem Res 38:1917–1924

    CAS  Google Scholar 

  90. Illing G, Hellgardt K, Wakeman RJ, Jungbauer A (2001) Preparation and characterisation of polyaniline based membranes for gas separation. J Membr Sci 184:69–78

    CAS  Google Scholar 

  91. Hasbullah H, Kumbharkar S, Ismail AF, Li K (2011) Preparation of polyaniline asymmetric hollow fiber membranes and investigations towards gas separation performance. J Membr Sci 366:116–124

    CAS  Google Scholar 

  92. Julian H, Wenten G (2012) Polysulfone membranes for CO2/CH4 separation: state of the art. IOSR J Eng 2:484–495

    Google Scholar 

  93. Dai Y, Guiver MD, Robertson GP, Kang YS, Lee KJ, Jho JY (2004) Preparation and characterization of polysulfones containing both hexafluoroisopropylidine and trimethylsilyl groups as gas separation membrane materials. Macromolecules 37:1403–1410

    CAS  Google Scholar 

  94. Dai Y, Guiver MD, Robertson GP, Kang YS, Lee KJ (2003) Enhancement in the gas permeabilities of novel polysulfones with pendant 4-trimethylsilyl-α-hydroxylbenzyl substituents. Macromolecules 36:6807–6816

    CAS  Google Scholar 

  95. Mc Hattie JS, Koros WJ, Paul DR (1991) Gas transport properties of polysulphones: 1. Role of symmetry of methyl group placement on bisphenol rings. Polymer 32:840–850

    CAS  Google Scholar 

  96. Marchese J, Ochoa N, Pagliero C (1995) Preparation and gas separation performance of silicone-coated polysulfone membranes. J Chem Technol Biotechnol 63:329–336

    CAS  Google Scholar 

  97. Wang D, Teo WK, Li K (2002) Preparation and characterization of high-flux polysulfone hollow fiber gas separation membranes. J Membr Sci 204:247–256

    CAS  Google Scholar 

  98. Ahn J, Chung WJ, Pinnau I, Guiver MD (2008) Polysulfone/silica nanoparticle mixed-matrix membranes for gas. J Membr Sci 314:123–133

    CAS  Google Scholar 

  99. Weng TH, Tseng HH, Wey MY (2009) Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. Int J Hydrogen Energy 34:8707–8715

    CAS  Google Scholar 

  100. Mao Z, Jie X, Cao Y, Wang L, Li M, Yuan Q (2011) Preparation of dual-layer cellulose/polysulfone hollow fiber membrane and its performance for isopropanol dehydration and CO2 separation. Sep Puri Technol 77:179–184

    CAS  Google Scholar 

  101. Arahman N, Arifin B, Mulyati S, Ohmukai Y, Matsuyama H (2012) Structure change of polyethersulfone hollow fiber membrane modified with pluronic F127, polyvinylpyrrolidone, and Tetronic 1307. Mater Sci Appl 3:72–77

    CAS  Google Scholar 

  102. Wang D, Li K, Teo WK (2000) Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as non-solvent additive. J Membr Sci 176:147–158

    CAS  Google Scholar 

  103. Borneman Z, Vant’s Hof JA, Smolders CA, Van vee HM (1986) Hollow fiber gas separation membranes: structure and properties. In: Proceedings of the fourth BOC Priestley conference. Royal Society of Chemistry, London, 16–18 Sept 1986

    Google Scholar 

  104. Vant’s Hof JA (1988) Wet spinning of asymmetric hollow fiber membranes for gas separation. Ph.D. Thesis, Twente University, The Netherlands

    Google Scholar 

  105. Van’t Hof JA, Reuvers AJ, Boon RM, Rolevink HHM, Smolders CA (1992) Preparation of asymmetric gas separation membranes with high selectivity by a dual-bath coagulation method. J Membr Sci 70:17–30

    Google Scholar 

  106. Li SG, Koops GH, Mulder MHV, Van den Boomgaard T, Smolders CA (1994) Wet spinning of integrally skinned hollow fiber membranes by a modified dual-bath coagulation method using a triple orifice spinneret. J Membr Sci 94:329–340

    CAS  Google Scholar 

  107. Kesting RE, Fritzsche AK, Murphy MK, Handermann AC, Cruse CA, Malon RF (1989) Process for forming asymmetric gas separation membranes having graded density skins. US Patent 4 871,494, 3 Oct 1989

    Google Scholar 

  108. Fritzsche AK, Cruse CA, Murphy MK, Kesting RE (1990) Polyethersulfone and polyphenylsulfone fiber trilayer membranes spun from Lewis acid:base complexes—structure determination by SEM, DSC and oxygen plasma ablation. J Membr Sci 54:29–50

    CAS  Google Scholar 

  109. Wang D (1995) Polyethersulfone hollow fiber gas separation membranes prepared from solvent systems containing nonsolvent additives. Ph.D. Thesis, National University of Singapore

    Google Scholar 

  110. Wang D, Li K, Teo WK (1996) Polyethersulfone hollow fiber gas separation membranes prepared from NMP/alcohol solvent systems. J Membr Sci 115:85–108

    CAS  Google Scholar 

  111. Kim DH, Ko YH, Kim TW, Park JS, Lee HK (2012) Separation of N2/SF6 binary mixtures using polyethersulfone (PESf) hollow fiber membrane. Korean J Chem Eng 29:1081–1085

    CAS  Google Scholar 

  112. Jiang L, Chung TS, Li DF, Cao C, Kulprathipanja S (2004) Fabrication of Matimid/polyethersulfone dual-layer hollow fiber membranes for gas separation. J Membr Sci 240:91–103

    CAS  Google Scholar 

  113. Ismail AF, Norida R, Rahman WAW, Matsuura T, Hashemifard SA (2011) Preparation and characterization of hyperthin-skinned and high performances asymmetric polyethersulfone membrane for gas separation. Desalination 273:93–104

    CAS  Google Scholar 

  114. Pesiri DR, Jorgensen B, Dye RC (2003) Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, carbon dioxide. J Membr Sci 218:11–18

    CAS  Google Scholar 

  115. Berchtold KA, Young JS, Dudeck KW (2006) High temperature separation membranes of hydrogen purification and carbon capture. LALP-06-043, Mar 2006

    Google Scholar 

  116. Choi S, Coronas J, Lai Z, Yust D, Onorato F, Tsapatsis M (2008) Fabrication and gas separation properties of polybenzimidazole (PBI)/nanoporous silicates hybrid membranes. J Membr Sci 316:145–152

    CAS  Google Scholar 

  117. Hosseini SS, Peng N, Chung TS (2010) Gas separation membranes developed through integration of polymer blending and dual-layer hollow fiber spinning process for hydrogen and natural gas hollow fiber spinning process for hydrogen and natural gas enrichments. J Membr Sci 349:156–166

    CAS  Google Scholar 

  118. Kumbharkar SC, Liu Y, Li K (2011) High performance polybenzimidazole based asymmetric hollow fiber membranes for H2/CO2 separation. J Membr Sci 375:231–240

    CAS  Google Scholar 

  119. Young JSY, Long GS, Espinoza BF (2006) Cross-linked polybenzimidazole membrane for gas separation. US Patent 20060021502A1, 2 Feb 2006

    Google Scholar 

  120. Kong J, Li K (2001) Preparation of PVDF hollow-fiber membranes via immersion precipitation. J Appl Polym Sci 81:1643–1653

    CAS  Google Scholar 

  121. Shen Y, Lua AC (2012) Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chem Eng J 192:201–210

    CAS  Google Scholar 

  122. Consolati G, Pegoraro M, Quasso F, Severini F (2001) Chlorinated PTMSP membranes: permeability, free volume and physical properties. Polymer 42:1265–1269

    CAS  Google Scholar 

  123. Masuda T, Isobe E, Higashimura T, Takada K (1983) Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability. J Am Chem Soc 105:7473–7474

    CAS  Google Scholar 

  124. Nagai K, Masuda T, Nakagawa T, Freeman BD, Pinnau I (2001) Poly[1-(trimethylsilyl)-1propyne and related polymers: synthesis properties and functions. Prog Polym Sci 26:721–798

    CAS  Google Scholar 

  125. Ichiraku Y, Stern SA, Nakagawa T (1987) An investigation of the high gas permeability of poly(1-trimethylsilyl-1-propyne). J Membr Sci 34:5–18

    CAS  Google Scholar 

  126. Merkel TC, He Z, Pinnau I, Freeman BD, Meakin P, Hill AJ (2003) Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne). Macromolecules 36:6844–6855

    CAS  Google Scholar 

  127. Woo M, Choi J, Tsapatsis M (2008) Poly(1-trimethylsilyl-1-propyne)/MFI composite membranes for butane separation. Microporous Mesoporous Mater 110:330–338

    CAS  Google Scholar 

  128. Qiu J, Zheng JM, Peinemann KV (2006) Gas transport properties in a novel poly(trimethylsilylpropyne) composite membrane with nanosized organic filler trimethylsilylglucose. Macromolecules 39:4093–4100

    CAS  Google Scholar 

  129. Peter J, Peinemann KV (2009) Multilayer composite membrane for gas separation based on crosslinked PTMSP gutter layer and partially crosslinked Matrmid® 5218 selective layer. J Membr Sci 340:62–72

    CAS  Google Scholar 

  130. Vopiča O, De Angelis MG, Sarti GC (2014) Mixed gas sorption in glassy polymeric membranes: I. CO2/CH4 mixtures sorption in poly(1-trimetylsilyl-1-propyne) (PTMSP). J Membr Sci 449:97–108

    Google Scholar 

  131. Xiao S, Feng X, Huang RYM (2007) Trimesoyl chloride crosslinked membranes for CO2/N2 separation and pervaporation dehydration of isopropanol. J Membr Sci 306:36–46

    CAS  Google Scholar 

  132. Papanceaa A, Valente AJM, Patachia S, Lobo VMM (2009) Poly (vinyl alcohol) (PVA)-based polymer membranes. Nova, NY

    Google Scholar 

  133. Zou J, Ho WSW (2006) CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol). J Membr Sci 286:310–332

    CAS  Google Scholar 

  134. Matsuyama H, Terada A, Nakagawara T, Kitamura Y, Teramoto Y (1999) Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane. J Membr Sci 163:221–227

    CAS  Google Scholar 

  135. Park YI, Lee KH (2001) Preparation of water-swollen hydrogel membranes for gas separation. J Appl Polym Sci 80:1785–1791

    CAS  Google Scholar 

  136. Jenkins AD, Kratochvíl P, Stepto RFT, Suter UW (1996) Glossary of basic terms in polymer science. Pure Appl Chem 68(12):2287–2311

    CAS  Google Scholar 

  137. Paul DR, Newman S (eds) (1978) Polymer blends. Academic, London

    Google Scholar 

  138. Schmidt JJ, Gardella JA Jr, Salvati L Jr (1989) Surface studies of polymer blends. 2. An ESCA and IR study of poly(methyl methacrylate)/poly(vinyl chloride) homopolymer blends. Macromolecules 22:4489–4495

    CAS  Google Scholar 

  139. Coleman MM, Painter PC (1976) Fourier transforms infrared studies of polymeric materials. J Macromol Sci C 16:197–313

    Google Scholar 

  140. Yoshino M, Ito K, Okamoto KI (2000) Effects of hard-segment polymers on CO2/N2 gas-separation properties of poly(ethyleneoxide)-segmented copolymers. J Polym Sci B Polym Phys 38:1707–1715

    CAS  Google Scholar 

  141. Zimmerman CM, Koros WJ (1999) Polypyrrolones for membrane gas separation. I. Structural comparison of gas transport and sorption properties. J Polym Sci B Polym Phys 37:1235–1249

    CAS  Google Scholar 

  142. Zimmerman CM, Koros WJ (1999) Polypyrrolones for membrane gas separation. II. Activation energies and heat of sorption. J Polym Sci B Polym Phys 37:1251–1265

    CAS  Google Scholar 

  143. Patil VE, van der Broeke LJP, Vercauteren FF, Keurentjes JTF (2006) Permeation of supercritical carbon dioxide through polymeric hollow fiber membranes. J Membr Sci 271:77–85

    CAS  Google Scholar 

  144. Wang M, Yang D, Wang Z, Wang J, Wang S (2010) Effects of pressure and temperature on fixed-site carrier membrane for CO2 separation from natural gas. Front Chem Eng Chin 4:127–132

    CAS  Google Scholar 

  145. Semsarzadeh MA, Ghalei B (2012) Characterization and gas permeability of polyurethane and polyvinyl acetate blend membranes with polyethylene oxide-polypropylene oxide block copolymer. J Membr Sci 401–402:97–108

    Google Scholar 

  146. Car A, Stropnik C, Yave W, Peinemann KV (2008) PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 307:88–95

    CAS  Google Scholar 

  147. Yave W, Car A, Peinemann KV, Shaikh MQ, Rätzke K, Faupel F (2009) Gas permeability and free volume in poly(amide-b-ethylene oxide)/polyethylene glycol blend membranes. J Membr Sci 339:177–183

    CAS  Google Scholar 

  148. Yave W, Car A, Funari SS, Nunes SP, Peinemann KV (2010) CO2-philic polymer membrane with extremely high separation performance. Macromolecules 43:326–333

    CAS  Google Scholar 

  149. Madaeni SS, Nooripour RM, Vatanpour V (2012) Preparation and characterization of polyimide and polyethersulfone blend membranes for gas separation. Asia-Pacific J Chem Eng 7:747–754

    CAS  Google Scholar 

  150. Kapantaidakis GC, Koops GH, Wessling M (2002) Preparation and characterization of gas separation hollow fiber membranes based on polyethersulfone-polyimide miscible blends. Desalination 145:353–357

    CAS  Google Scholar 

  151. Kapantaidakis GC, Koops GH (2002) High flux polyethersulfone-polyimide blend hollow fiber membrane for gas separation. J Membr Sci 204:153–171

    CAS  Google Scholar 

  152. Kapantaidakis GC, Koops GH, Wessling M (2002) Effect of spinning conditions on the structure and the gas permeation properties of high flux polyethersulfone-polyimide blend hollow fibers. Desalination 144:121–125

    CAS  Google Scholar 

  153. Koros WJ, Woods DG (2001) Elevated temperature application of polymer hollow-fiber membranes. J Membr Sci 181:157–166

    CAS  Google Scholar 

  154. Seo Y, Kim S, Hong SU (2006) Highly selective polymeric membranes for gas separation. Polymer 47:4501–4504

    CAS  Google Scholar 

  155. Okamoto K, Tanaka K, Muraoka M, Kita H, Maruyama Y (1992) Gas permeability and permselectivity of fluorinated polybenzoxazoles. J Polym Sci B 30:1215–1221

    CAS  Google Scholar 

  156. McKeown NB (1998) Phthalocyanine materials: synthesis, structure and function. CUP, Cambridge, UK

    Google Scholar 

  157. Ilinitch OM, Fenelonov VB, Lapkin AA, Okkel LG, Terskikh VV, Zamaraev KI (1999) Intrinsic microporosity and gas transport in polyphenylene oxide polymers. Microporous Mesoporous Mater 31:97–110

    CAS  Google Scholar 

  158. McKeown NB, Budd PM (2009) Polymers of intrinsic microporosity. In: Encyclopedia of polymer science and technology. John Wiley & Sons, NY

    Google Scholar 

  159. McKeown NB, Budd PM, Msayib KJ, Ghanem BS, Kingston HJ, Tattershall CE, Makhseed S, Reynolds KJ, Fritsch D (2005) Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem Eur J 11:2610–2620

    CAS  Google Scholar 

  160. McKeown NB (2012) Review article: Polymers of intrinsic microporosity. ISRN Mater Sci. Article ID 513986, 16p

    Google Scholar 

  161. Makhseed S, McKeown NB, Msayib K, Bumajdad A (2005) Inducing solid-state isolation of the phthalocyanine macro-cycle by its incorporation within rigid, randomly shaped oligomers. J Mater Chem 5:1865–1870

    Google Scholar 

  162. Msayib K, Makhseed S, McKeown NB (2001) Synthetic strategies towards macrodiscotic materials. Can a new dimension be added to liquid crystal polymers? J Mater Chem 11:2784–2789

    CAS  Google Scholar 

  163. Du NY, Song J, Robertson GP, Pinnau I, Guiver M (2008) Linear high molecular weight ladder polymer via fast polycondensation of 5,5′,6,6′-tetrahydroxy- 3,3,3′,3′-tetramethylspirobisindane with 1,4-dicyanotetrafluoroben-zene. Macromol Rapid Commun 29:783–788

    CAS  Google Scholar 

  164. Du NY, Cin MMD, Pinnau I, Nicalek A, Robertson GP, Guiver MD (2011) Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation. Macromol Rapid Commun 32:631–636

    CAS  Google Scholar 

  165. Du N, Park HB, Robertson GP, Dal-Cin MM, Visser T, Scoles L, Guiver MD (2011) Polymer nanosieve membranes for CO2-capture applications. Nat Mater 10:372–375

    CAS  Google Scholar 

  166. Koros WJ, Mahajan R (2000) Pushing the limits on possibilities for large scale gas separation: which strategies? J Membr Sci 175:181–196

    CAS  Google Scholar 

  167. Roualdes S, Lee AVD, Berjoan R, Sanchez J, Durand J (1999) Gas separation properties of organosilicon plasma polymerized membranes. AIChE J 45:1566–1575

    CAS  Google Scholar 

  168. Won J, Kim MH, Kang YS, Park HC, Kim UY, Choi SC, Koh SK (2000) Surface modification of polyimide and polysulfone membranes by ion beam for gas separation. J Appl Polym Sci 75:1554–1560

    CAS  Google Scholar 

  169. Maya EM, Munoz DM, de la Campa JG, de Abajo J, Lozano AE (2006) Thermal effect on polyethyleneoxide-containing copolyimide membranes for CO2/N2 separation. Desalination 199:188–190

    CAS  Google Scholar 

  170. Li Y, Cao C, Chung TS, Pramoda KP (2004) Fabrication of dual-layer polyethersulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation. J Membr Sci 245:53–60

    CAS  Google Scholar 

  171. Castro-Domínguez B, Leelachaikul P, Takagaki A, Sugawara T, Kikuchi R, Oyama ST (2013) Perfluorocarbon-based supported liquid membranes for O2/N2 separation. Sep Purif Technol 116:19–24

    Google Scholar 

  172. McLeay EE, Jansen JC, Kapteijn F (2006) Zeolite based films, membranes and membrane reactors: progress and prospects. Microporous Mesoporous Mater 90:198–220

    Google Scholar 

  173. Barrer RM (1939) Activated diffusion in membranes. Trans Faraday Soc 35:644–656

    CAS  Google Scholar 

  174. Van Den Broeke LJP, Bakker WJW, Kapteijn F, Moulijn JA (1999) Binary permeation through a silicalite-1 membrane. AIChE J 45:976–985

    Google Scholar 

  175. Petersa TA, Fontalvoa J, Vorstmana MAG, Benesa NE, van Damb RA, Vroonb ZAEP, van Soest-Vercammenc ELJ, Keurentjesa JTF (2005) Hollow fibre microporous silica membranes for gas separation and pervaporation: synthesis, performance and stability. J Membr Sci 248:73–80

    Google Scholar 

  176. Uhlhorn RJR, Keizer K, Burggraaf AJ (1992) Gas transport and separation with ceramic membranes. Part II. Synthesis and separation properties of microporous membranes. J Membr Sci 66:271–287

    CAS  Google Scholar 

  177. de Lange RSA, Hekkink JHA, Keizer K, Burggraaf AJ (1995) Formation and characterization of supported microporous ceramic membranes prepared by sol–gel modification techniques. J Membr Sci 99:57–75

    Google Scholar 

  178. de Vos RM, Verweij H (1998) Improved performance of silica membranes for gas separation. J Membr Sci 143:37–51

    Google Scholar 

  179. Pohl PI, Heffelfinger GS (1999) Massively parallel molecular dynamics simulation of gas permeation across porous silica membrane. J Membr Sci 155:1–7

    CAS  Google Scholar 

  180. Zhang K, Sunarso J, Shao Z, Zhou W, Sun C, Wang S, Liu S (2011) Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. RSC Adv 1:1661–1676

    CAS  Google Scholar 

  181. Kharton VV, Yaremchenko AA, Kovalevsky AV, Viskup AP, Naumovich EN, Kerko PF (1999) Perovskite-type oxides for high-temperature oxygen separation membranes. J Membr Sci 163:307–317

    CAS  Google Scholar 

  182. Ayral A, Julbe A, Roualdes S, Rouessac V, Durand J, Sala B (2006) Silica membranes-basic principles. Period Polytech Ser Chem Eng 50:67–79

    CAS  Google Scholar 

  183. Ramsay JDF (1999) Characterization of the pore structure of membranes. MRS Bull 24:36–40

    CAS  Google Scholar 

  184. Topuz B, ˁiftˁioglu M (2006) Permeation of pure gases through silica membranes with controlled pore size. Desalination 200:80–82

    CAS  Google Scholar 

  185. Shelekhin AB, Dixon AG, Ma YH (1992) Adsorption, permeation, and diffusion of gases in microporous glass membranes. J Membr Sci 75:233–244

    CAS  Google Scholar 

  186. Naskar MK, Kundu D, Chatterjee M (2009) Silicate-1 zeolite membranes on unmodified and modified surfaces of ceramic supports: a comparative study. Bull Mater Sci 32:537–541

    CAS  Google Scholar 

  187. Marković A, Stoltenberg D, Enke D, Schlünder E-U, Seidel-Morgenstern A (2009) Gas permeation through porous glass membranes. Part 1. Mesoporous glasses-Effect of pore diameter and surface properties. J Membr Sci 336:17–31

    Google Scholar 

  188. Structure-zeolites. www.ch.ic.ac.uk/vchemlib/course/zeolite/structure.html

  189. Nomura M, Yamaguchi T, Nakao S (1997) Silicalite membranes modified by counterdiffusion CVD technique. Ind Eng Chem Res 36:4217–4223

    CAS  Google Scholar 

  190. Zeolite—Wikipedia, the free encyclopedia. International Zeolite Association, database of zeolite structures

    Google Scholar 

  191. Zeolite—Wikipedia, the free encyclopedia. Webmineral Zeolites, Dana Classification

    Google Scholar 

  192. Caro J, Noack M, Kolsch P, Schafer R (2000) Zeolite membranes—state of their development and perspective. Microporous Mesoporous Mater 38:3–24

    CAS  Google Scholar 

  193. Worathanakul P, Kongkachuichay P (2008) New SUZ-4 zeolite membrane from sol-gel technique. World Acad Sci Technol 2:11–21

    Google Scholar 

  194. Wong WC, Au LTY, Ariso CT, Yeung KL (2001) Effects of synthesis parameters on the zeolite membrane growth. J Membr Sci 191:143–146

    CAS  Google Scholar 

  195. Horri K, Tanaka K, Kita K, Okamoto K (1994) In: Proceedings of the 26th autumn meeting of Soc. Chem. Eng., Japan, p 99

    Google Scholar 

  196. Bernal MP, Xometritakis G, Tsapatsis M (2001) Tubular MFI zeolite membranes made by secondary (seeded) growth. Catal Today 67:101–107

    CAS  Google Scholar 

  197. Caro J, Noack M (2008) Zeolite membranes—recent developments and progress. Microporous Mesoporous Mater 115:215–233

    CAS  Google Scholar 

  198. Tompsett GA, Conner WC, Yngvesson KS (2006) Microwave synthesis of nanoporous materials. Chem Phys Chem 7:296–319

    CAS  Google Scholar 

  199. Li Y, Yang W (2008) Microwave synthesis of zeolite membranes: a review. J Membr Sci 316:3–17

    CAS  Google Scholar 

  200. Cundy CS (1998) Microwave techniques in the synthesis and modification of zeolite catalyst. A review. Collect Czech Chem Commun 63:1699–1723

    CAS  Google Scholar 

  201. Li Y, Chen H, Liu J, Yang W (2006) Microwave synthesis of LTA zeolite membranes without seeding. J Membr Sci 277:230–239

    CAS  Google Scholar 

  202. Choi J, Jeong HK, Snyder MA, Stoeger JA, Masel RI, Tespatsis M (2009) Grain boundary defect elimination in a zeolite membrane by rapid thermal processing. Science 325:590–593

    CAS  Google Scholar 

  203. Varoon K, Zhang X, Elyassi B, Brewer DD, Gette M, Kumar S, Lee A, Maheshwari S, Mittal A, Sung CY, Cococcioni M, Francis LF, McCormick AV, Mkhoyan A, Tsapatsis M (2011) Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334:72–75

    CAS  Google Scholar 

  204. Liu L, Cheng M, Ma D, Hu G, Pan X, Bao X (2006) Synthesis, characterization, and catalytic properties of MWW zeolite with variable Si/Al ratios. Microporous Mesoporous Mater 94:304–312

    CAS  Google Scholar 

  205. Huang A, Wang N, Caro J (2012) Stepwise synthesis of sandwich-structured composite zeolite membranes with enhanced separation selectivity. Chem Commun 48:3542–3544

    CAS  Google Scholar 

  206. Cheng ZL, Liu Z, Wan HL (2005) Microwave-heating synthesis and gas separation performance of NaA zeolite membrane. Chin J Chem 23:28–31

    CAS  Google Scholar 

  207. Yuwen L, Zhu M, Su H, You X, Deng C, Lv X (2011) Effects of synthesis parameters on hydrothermal synthesis of NaA zeolite. Adv Mater Res 148:1444–1448

    Google Scholar 

  208. Xu X, Yang W, Liu J, Lin L, Stroh N, Brunner H (2000) Synthesis and gas permeation properties of an NaA zeolite membrane. Chem Commun :603–604

    Google Scholar 

  209. Aoki K, Kusakabe K, Morooka S (1998) Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis. J Membr Sci 141:197–205

    CAS  Google Scholar 

  210. Chen X, Yang W, Liu J, Xu X, Huang A, Lin L (2002) Synthesis of NaA zeolite membrane with high performance. J Mater Sci Lett 21:1023–1025

    CAS  Google Scholar 

  211. Dey KP, Kundu D, Chatterjee M, Naskar MK (2013) Preparation of NaA zeolite membranes using poly(ethyleneimine) as buffer layer, and study of their permeation behavior. J Am Chem Soc 96:68–72

    CAS  Google Scholar 

  212. Gies H (1986) Studies on clatherasis. VI: Crystal structure of decadodecasil 3R the missing link between zeolites and clathrasils. Z Kristallogr 175:93–104

    CAS  Google Scholar 

  213. Nakayama K, Suzuki K, Yoshida M, Tomita T (2006) Method of preparing DDR type zeolite membrane, DDR type zeolite membrane, and composite DDR type zeolite membrane, and method for preparation thereof. US Patent 7014680B2, 21 Mar 2006

    Google Scholar 

  214. van den Bergh J, Zhu W, Kapteijn F, Moulijn JA, Yajima K, Nakayama K, Tomita T, Yoshida S (2007) Natural gas purification wth a DDR zeolite membrane: permeation modeling with Maxwell–Stefan equations. Stud Surf Sci Catal 170:1021–1027

    Google Scholar 

  215. van den Bergh J, Zhu W, Gascon J, Moulinj JA, Kapteijn F (2008) Separation and permeation characteristics of a DDR zeolite membrane. J Membr Sci 316:35–45

    Google Scholar 

  216. Tomita T, Nakayama K, Sakai H (2004) Gas separation characteristics of DDR type zeolite membrane. Microporous Mesoporous Mater 68:71–75

    CAS  Google Scholar 

  217. Kanezashi M, O’Brien-Abraham J, Lin YS (2008) Gas permeation through DDR-type zeolite membranes at high temperatures. AICHE J 54:1478–1486

    CAS  Google Scholar 

  218. Xiao J, Wei J (1992) Diffusion mechanism of hydrocarbons in zeolites. 1. Theory. Chem Eng Sci 47:1123–1141

    CAS  Google Scholar 

  219. Himeno S, Tomita T, Suzuki K, Nakayama K, Yajima K, Yoshida S (2007) Synthesis and permeation of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Ind Eng Chem Res 46:6989–6997

    CAS  Google Scholar 

  220. Himeno S, Takeya K, Fujita S (2010) Development of biogas separation process using DDR-type zeolite membrane. Kagaku Kogaku Ronbun 36:545–551

    CAS  Google Scholar 

  221. Hong M, Li S, Falconer JL, Noble RD (2008) Hydrogen purification using a SAPO-34 membrane. J Membr Sci 307:277–283

    CAS  Google Scholar 

  222. Li S, Falconer JL, Noble RD (2006) Improved SAPO-34 membranes for CO2/CH4 separations. Adv Mater 18:2601–2603

    CAS  Google Scholar 

  223. Li S, Martinek JG, Falconer JL, Noble RD, Gardner TQ (2005) High-pressure CO2/CH4 separation using SAPO-34 membranes. Ind Eng Chem Res 44:3220–3228

    CAS  Google Scholar 

  224. Poshusta JC, Tuan VA, Pape EA, Noble RD, Falconer JL (2000) Separation of light gas mixtures using SAPO-34 membranes. AIChE J 46:779–789

    CAS  Google Scholar 

  225. Zhou R, Ping EW, Funke HH, Falconer JL, Noble RD (2013) Improving SAPO-34 membrane synthesis. J Membr Sci 444:384–393

    CAS  Google Scholar 

  226. Li S, Carreon MA, Zhang Y, Funke HH (2010) Scale-up of SAPO-34 membranes for CO2/CH4 separation. J Membr Sci 352:7–13

    CAS  Google Scholar 

  227. Ping WE, Zhou R, Funke HH, Falconer JL, Noble RD (2012) Seeded-gel synthesis of SAPO-34 single channel and monolith membranes, for CO2/CH4 separations. J Membr Sci 415–416:770–775

    Google Scholar 

  228. Poshusta JC, Noble RD, Falconer JL (2001) Characterization of SAPO-34 membranes by water adsorption. J Membr Sci 186:25–40

    CAS  Google Scholar 

  229. Carreon ML, Li S, Carreon MA (2012) AIPO-18 membranes for CO2/CH4 separation. Chem Commun 48:2310–2312

    CAS  Google Scholar 

  230. Wikipedia, the free encyclopedia. ZSM-5. http://en.wikipedia.org/wiki/ZSM-5. Accessed

  231. Poshusta JC, Noble RD, Falconer JL (1999) Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes. J Membr Sci 160:115–123

    CAS  Google Scholar 

  232. Takata Y, Tsuru T, Yoshioka T, Asaeda M (2002) Gas permeation properties of MFI zeolite membranes prepared by the secondary growth of colloidal silicate and application to the methylation of toluene. Microporous Mesoporous Mater 54:257–268

    CAS  Google Scholar 

  233. Kwon WT, Kim SR, Kim EB, Bae SY, Kim Y (2011) H2/CO2 gas separation characteristics of zeolite membrane at high temperature. Adv Mater Res 26–28:267–270

    Google Scholar 

  234. Welk ME, Nenoff TM (2004) H2 separation through zeolite thin film membranes. Prep Pap Am Chem Soc Div Fuel Chem 40:889–890

    Google Scholar 

  235. Richter H, Voigt I, Fischer G, Puhlfürβ P (2003) Preparation of zeolite membranes on the inner surface of ceramic tubes and capillaries. Sep Purif Technol 32:133–138

    CAS  Google Scholar 

  236. Aoki K, Tuan VA, Falconer JL, Noble RD (2000) Gas permeation properties of ion-exchanged ZSM-5 zeolite membranes. Microporous Mesoporous Mater 39:485–492

    CAS  Google Scholar 

  237. Tuan VA, Noble RD, Falconer JL (2000) Boron-substituted ZSM-5 membranes: preparation and separation performance. AIChE J 46:1201–1208

    CAS  Google Scholar 

  238. Wang H, Lin YS (2012) Synthesis and modification of ZSM-5/silicate bilayer membrane with improved hydrogen separation performance. J Membr Sci 396:128–137

    CAS  Google Scholar 

  239. Cheng Y, Li JS, Wang LJ, Sun XY, Liu XD (2006) Synthesis and characterization of Ce-ZSM-5 zeolite membranes. Sep Purif Technol 51:210–218

    CAS  Google Scholar 

  240. Hasegawa Y, Tanaka T, Watanabe K, Jeong BH, Kusakabe K, Morooka S (2002) Separation of CO2/CH4 and CO2/N2 systems using ion-exchaged FAU-type zeolite membranes with different Si/Al ratios. Korean J Chem Eng 19:309–313

    CAS  Google Scholar 

  241. Gu X, Dong J, Nenoff TM (2005) Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N2 mixtures. Ind Eng Chem Res 44:937–944

    CAS  Google Scholar 

  242. Kumar P, Sung CY, Muraza O, Cococcioni M, Hashimi SA (2011) H2S adsorption by Ag and Cu ion exchanged faujasite. Microporous Mesoporous Mater 156:127–133

    Google Scholar 

  243. Julbe A, Motuzas J, Cazeville F, Volle G, Guizard C (2003) Synthesis of sodalite/α-Al2O3 composite membranes by microwave heating. Sep Purif Technol 32:139–149

    CAS  Google Scholar 

  244. Xu X, Bao Y, Song C, Yang W, Liu J, Lin L (2004) Microwave-assisted hydrothermal synthesis of hydroxyl-sodalite zeolite membrane. Microporous Mesoporous Mater 75:173–181

    CAS  Google Scholar 

  245. Cui Y, Kita H, Okamoto KI (2004) Preparation and gas separation performance of zeolite T membrane. J Mater Chem 14:924–952

    CAS  Google Scholar 

  246. Chen X, Wang J, Yin D, Yang J, Lu J, Zhang Y, Chen Z (2013) High performance zeolite T membrane for dehydration of organics by a new varying temperature hot-dip coating method. AIChE J 59:936–947

    CAS  Google Scholar 

  247. Barrer RM, Villger H (1969) The crystal structure of the synthetic zeolite L. Z Kristallogr Bd 128:352–370

    CAS  Google Scholar 

  248. Tsapatsis M, Lovallo M, Okubo T, Davis ME, Sadakata M (1995) Characterization of zeolite L nanoclusters. Chem Mater 7:1734–1741

    CAS  Google Scholar 

  249. Yin X, Wang X, Chu N, Yang J, Lu J, Zhang Y, Yin D (2010) Zeolite L/carbon nanocomposite membrane on the porous alumina tubes and their gas separation properties. J Membr Sci 348:181–189

    CAS  Google Scholar 

  250. Corma A, Rey F, Rius J, Sabater MJ, Valencia S (2004) Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature 431:287–290

    CAS  Google Scholar 

  251. Casado-Coterillo C, Sato J, Jimare MT, Valencia S, Corma A (2012) Preparation and characterization of ITQ-29/polysulfone mixed-matrix-membranes for gas separation: effect of zeolite composition crystal size. Chem Eng Sci 73:116–122

    CAS  Google Scholar 

  252. Tiscornia I, Valencia S, Corma A, Téllez C, Coronas J, Santamaria J (2008) Preparation of ITQ-29 (Al-free zeolite A) membranes. Microporous Mesoporous Mater 110:303–309

    CAS  Google Scholar 

  253. Huang A, Caro J (2010) Steam-stable hydrophobic ITQ-29 molecular sieve membrane with H2 selectivity prepared by secondary growth using Krytofix 222 as SDA. Chem Commun 46:7748–7750

    CAS  Google Scholar 

  254. Moscoso JG, Lewis GJ, Miller MA, Jan DY, Patton RL, Rohde LM (2003) UZM-5, UZM-5P and UZM-6: crystalline aluminosilicate zeolite and processes using the same. US Patent 6613302 B1, 2 Sept 2003

    Google Scholar 

  255. Blackwell CS, Broach RW, Gatter MG, Holmgren JS, Jan DY, Lewis GJ, Mezza BJ, Mezza TM, Miller MA, Moscoso JG, Patton RL, Rohde LM, Schoonover MW, Sinkler W, Wilson BA, Wilson ST (2003) Open-framework materials synthesized in the TMA + TEA + Mixed-Template system: the new low Si/Al ratio zeolites UZM-4 and UZM5. Angew Chem Int Ed 42:1737–1740

    CAS  Google Scholar 

  256. Liu C, Moscoso JG, Wilson ST (2012) Microporous UZM-5 inorganic zeolite membranes for gas, vapor, and liquid separations. US Patent 20120240763 A1, 27 Sept 2012

    Google Scholar 

  257. Maghsoodloorad H, Mirfendereski SY, Mohammadi T, Pak A (2011) Effects of gel parameters on the synthesis and characteristics of W-type zeolite nanoparticles. Clay Clay Miner 59:328–335

    CAS  Google Scholar 

  258. Mohammdi T, Maghsoodloorad H (2012) Synthesis and characterization of ceramic membranes (W-Type) zeolite membrane. Int J Appl Ceram Technol 1:1–11

    Google Scholar 

  259. Li T, Pan Y, Peinemann KV, Lai Z (2013) Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J Membr Sci 425–426:235–242

    Google Scholar 

  260. Bae TH, Lee JS, Qiu W, Koros WJ, Jones CW, Nair S (2010) A high performance gas-separation containing submicrometer-sized metal-organic framework crystals. Angew Chem Int Ed 49:9863–9866

    CAS  Google Scholar 

  261. Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J (2009) Zeolitic imidazolate membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J Am Chem Soc 131:1600–1601

    Google Scholar 

  262. Li YS, Liang FY, Bux H, Feldhoff A, Yand WS, Caro J (2010) Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. Angew Chem Int Ed 49:548–551

    CAS  Google Scholar 

  263. Liu Y, Hu E, Khan EA, Lai Z (2010) Synthesis of ZIF-69 membranes and separation of CO2/CO mixture. J Membr Sci 153:36–40

    Google Scholar 

  264. Venna SR, Carreon MA (2010) Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J Am Chem Soc 132:76–78

    CAS  Google Scholar 

  265. Sandström L, Sjöberg E, Hedlund J (2011) Very high flux MFI membrane for CO2 separation. J Membr Sci 380:232–240

    Google Scholar 

  266. Nair S, Lai Z, Nikolakis V, Xomeritakis G, Bonilla G, Tsapatsis M (2001) Separation of close-boiling hydrocarbon mixtures by MFI and FAU membranes made by secondary growth. Microporous Mesoporous Mater 48:219–228

    CAS  Google Scholar 

  267. Bétard A, Bux HG, Henke S, Zacher D, Caro J, Fischer RA (2012) Fabrication of a CO2-selective membrane by step-wise liquid-phase deposition of an alkylether functionalized pillared-layer metal-organic framework [Cu2L2P] n on a macroporous support. Microporous Mesoporous Mater 150:76–82

    Google Scholar 

  268. Bennett TD, Goodwin AL, Dove MT, Keen DA, Tucker MG, Barney ER, Soper AK, Bithell EG, Tan JC, Cheetham AK (2010) Structure and properties of an amorphous metal-organic framework. Phys Rev Lett 104:115503–115506

    Google Scholar 

  269. Ranjan R, Tsapatsis M (2009) Microporous metal organic framework membrane on porous support using the seeded growth method. Chem Mater 21:4920–4924

    CAS  Google Scholar 

  270. Bohrman JA, Carreon MA (2012) Synthesis of CO2/CH4 separation performance of Bio-MOF-1 membranes. Chem Commun 48:5130–5132

    CAS  Google Scholar 

  271. An J, Rosi NL (2010) Tuning MOF CO2 adsorption properties via cation exchange. J Am Chem Soc 132:5578–5579

    CAS  Google Scholar 

  272. An J, Shade CM, Chengelis-Czegan DA, Petoud S, Rosi NL (2011) Zinc-adeninate metal–organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J Am Chem Soc 133:1220–1223

    CAS  Google Scholar 

  273. Xomeritakis G, Naik S, Braunbarth CM, Cornelius CJ, Pardey R, Brinker CJ (2003) Organic-templated silica membranes. I. Gas and vapor transport properties. J Membr Sci 215:225–233

    CAS  Google Scholar 

  274. Li Y, Chung TS (2008) Exploratory development of dual-layer carbon-zeolite nanocomposite hollow fiber membrane with high performance for oxygen enrichment and natural gas separation. Microporous Mesoporous Mater 113:315–324

    CAS  Google Scholar 

  275. Alfaro S, Valenzuela A (2006) Zeolite membrane prepared by the dry gel method for gas separation. Adv Mater Technol Mater Proc J 8:63–66

    CAS  Google Scholar 

  276. Kuznicki SM (1990) Preparation of small-pored crystalline titanium molecular sieve zeolites. US Patent 4938939 A, 3 July 1990

    Google Scholar 

  277. Stoeger JA, Veziri CM, Palomino M, Corma A, Kanellopoulos NK, Tsapatsis MN, Karanikolos G (2012) On stability and performance of highly c-oriented AlPO4-5 and CoAPO-5 membranes. Microporous Mesoporous Mater 147:286–294

    Google Scholar 

  278. Nagase T, Kiyozumi Y, Hasegava Y, Inoue T, Ikeda T (2007) Dehydration of concentrated acetic acid solutions by pervaporation using novel MER zeolite membranes. Chem Lett 36:594–595

    CAS  Google Scholar 

  279. Hasegawa Y, Nagase T, Kiyozumi Y, Mizukami F (2010) Preparation, characterization, and dehydration performance of MER-type zeolite membranes. Sep Purif Technol 73:25–31

    CAS  Google Scholar 

  280. Kim SJ, Yang S, Reddy GK, Smirniotis P, Dong J (2013) Zeolite membrane reactor for high-temperature water-gas shift reaction: effects of membrane properties and operating conditions. Energy Fuel 27:4471–4480

    CAS  Google Scholar 

  281. Yang S, Lin X, Lewis W, Suyetin M, Bichoutskaia E, Parker JE, Tang CC, Allan DR, Rizkallah PJ, Hubberstey P, Champness NR, Thomas KM, Blake AJ, Schro´´der M (2012) A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide. Nat Mater 11:710–716

    CAS  Google Scholar 

  282. Radnedge S (2012) New holey material soaks up CO2/News/gasworld. 18 June 2012

    Google Scholar 

  283. http://www.gasworld.com/news/regions/west-europe/new-holey-mat

  284. Shah M, McCarthy MC, Sachdeva S, Lee AK, Jeong HK (2012) Current status of metal-organic framework membranes for gas separations: promises and challenges. Ind Eng Chem Res 51:2179–2199

    CAS  Google Scholar 

  285. Rowsell JLC, Yaghi OM (2004) Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14

    CAS  Google Scholar 

  286. Yoo Y, Lai Z, Jeong HK (2009) Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous Mesoporous Mater 123:100–106

    CAS  Google Scholar 

  287. Liu Y, Ng Z, Khan AE, Jeong HK, Ching CB, Lai Z (2009) Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous Mesoporous Mater 118:296–301

    CAS  Google Scholar 

  288. Klinowski J, Paz FAA, Silva P, Rocha J (2011) Microwave-assisted synthesis of metal-organic frameworks. Dalton Trans 40:321–330

    CAS  Google Scholar 

  289. Hu Y, Dong X, Nan J, Jin W, Ren X, Xu N, Lee YM (2011) Metal-organic framework membranes fabricated via reactive seeding. Chem Commun 47:737–739

    CAS  Google Scholar 

  290. Schoedel A, Scherb C, Bein T (2010) Oriented nanoscale films of metal-organic frameworks by temperature gel-layer synthesis. Angew Chem Int Ed 49:7225–7228

    CAS  Google Scholar 

  291. Lu H, Zhu S (2013) Interfacial synthesis of free standing metal-organic framework-membranes. Eur J Inorg Chem 2013:1294–1300

    CAS  Google Scholar 

  292. Ben T, Lu C, Pei C, Xu S, Qiu S (2012) Polymer-supported and free-standing metal-organic framework membrane. Chem Eur 18:10250–10253

    CAS  Google Scholar 

  293. Ai X, Hu X (2003) Study on organic-inorganic hybrid membranes. Huxue Jinzhan 16:83–89

    Google Scholar 

  294. Chung TS, Jiang LY, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507

    CAS  Google Scholar 

  295. Bouma RHB, Checchetti A, Chidichimo G, Drioli E (1997) Permeation through a heterogeneous membrane: the effect of the dispersed phase. J Membr Sci 128:141–149

    CAS  Google Scholar 

  296. Funk CV, Lloyd DRE (2008) Zeolite-filled microporous mixed matrix (ZeoTIPS) membranes: prediction of gas separation performance. J Membr Sci 313:224–231

    CAS  Google Scholar 

  297. Paul DR, Kemps DR (1973) The diffusion time lag in polymer membranes containing adsorptive fillers. J Polym Sci Polym Phys 41:79–93

    Google Scholar 

  298. Kulprathipanja S, Neuzil RW, Li NN (1988) Separation of fluids by means of mixed matrix membranes. US Patent 4740219, 26 Apr 1988

    Google Scholar 

  299. Kulprathipanja S, Neuzil RW, Li NN (1992) Separation of gases by means of mixed matrix membranes. US Patent 5127925, 7 July 1992

    Google Scholar 

  300. Hussain M, König A (2012) Mixed-matrix membranes for gas separation, polydimethylsiloxane filled with zeolite. Chem Eng Technol 35:561–569

    CAS  Google Scholar 

  301. Ismail AF, Kusworo TD, Mustafa A (2008) Enhanced gas permeation of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent. J Membr Sci 319:306–312

    CAS  Google Scholar 

  302. Widjojo N, Chung TS, Kulprathipanja S (2008) The fabrication of hollow fiber membranes with double-layer mixed-matrix materials for gas separation. J Membr Sci 325:326–335

    CAS  Google Scholar 

  303. Chaidou CI, Pantoleontos G, Koutsonikolas DE, Kaldis SP, Sakellaropoulos GP (2012) Gas separation properties of polyimide-zeolite mixed matrix membrane. Sep Purif Technol 47:950–962

    CAS  Google Scholar 

  304. Boroglu MS, Gurkaynak MA (2011) Fabrication and characterization of silica modified polyimide-zeolite mixed matrix membranes for gas separation properties. Polym Bull 66:463–478

    CAS  Google Scholar 

  305. Karkhanechi H, Kazemian H, Nazockdast H, Mozdianfard MR, Bidoki SM (2012) Fabrication of homogeneous polymer-zeolite nanocomposites as mixed-matrix membranes for gas separation. Chem Eng Technol 35:885–888

    CAS  Google Scholar 

  306. Adams R, Carson C, Ward J, Tannenbaum R, Koros W (2010) Metal organic framework mixed matrix membranes for gas separation. Microporous Mesoporous Mater 131:13–20

    CAS  Google Scholar 

  307. Nik OG, Chen XY, Kaliaguine S (2012) Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. J Membr Sci 413–414:48–61

    Google Scholar 

  308. Tanh Jeazet HB, Staudt C, Janiak C (2012) Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans 41:14003–14027

    CAS  Google Scholar 

  309. Hu J, Cai H, Ren H, Wei Y, Xu Z, Liu H, Hu Y (2010) Mixed-matrix membrane hollow fibers of Cu2(BTC)2 MOF and polyimide for gas separation and adsorption. Ind Eng Chem Res 49:12605–12612

    CAS  Google Scholar 

  310. Basu S, Cano-Odena A, Vankelecom IFJ (2011) MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep Purif Technol 81:31–40

    CAS  Google Scholar 

  311. Li Y, Chung TS, Huang Z, Kulprathipanja S (2008) Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membrane with submicron PES-zeolite beta mixed matrix dense-selective layer for gas separation. J Membr Sci 277:28–37

    Google Scholar 

  312. Jiang LY, Chung TS, Kulprathipanja S (2006) Fabrication of mixed matrix hollow fibers with intimate polymer-zeolite interface for gas separation. AIChE J 52:2898–2908

    CAS  Google Scholar 

  313. Cong H, Radosz M, Towler BF, Shen Y (2007) Polymer-inorganic membrane for gas separation. Sep Purif Technol 55:281–291

    CAS  Google Scholar 

  314. Liu H (1997) Synthesis of TiO2 nanopowder enwrapped by organic membrane with microwave induced plasma method. Huaxue Tongbao 10:44–46

    Google Scholar 

  315. Iwata M, Adahi T, Tomidokoro M, Ohta M, Kobayashi T (2003) Hybrid sol-gel membranes of polyacrylonitrile-tetraethoxysilane composites for gas perm selectivity. J Appl Polym Sci 88:1752–1759

    CAS  Google Scholar 

  316. Ahmad J, Deshmukh K, Hägg MB (2013) Influence of TiO2 on the chemical, mechanical, and gas separation properties of polyvinyl alcohol-titanium dioxide (PVA-TiO2) nanocomposite membrane. Int J Polym Anal Charact 18:287–296

    CAS  Google Scholar 

  317. Perez EV, Balkus KJ, Ferraris JP, Musselman IH (2009) Mixed-matrix membranes containing MOF-5 for gas separation. J Membr Sci 328:165–173

    CAS  Google Scholar 

  318. Morooka S, Kusakabe K (1999) Ceramics: getting into the 2000s, Part D. In: Advances in science and technology (Faenza, Italy), vol 16, pp 389–400

    Google Scholar 

  319. Gopolan S (2002) Using ceramic mixed ionic and electronic conductors for gas separation. JOM 54:26–29

    Google Scholar 

  320. Kulprathipanja A, Alptekin GO, Falconer JL, Way JD (2005) Pd and Pd-Cu membranes: inhibition of H2 Permeation by H2S. J Membr Sci 254:49–62

    CAS  Google Scholar 

  321. Kluiters SCA (2004) Status review on membrane system for hydrogen preparation. Intermediate Report EU Project MIGREYD NNES-2001-670, ECNC-04-102

    Google Scholar 

  322. Fuertes AB (2000) Adsorption-selective carbon membranes for gas separation. J Membr Sci 177:9–16

    CAS  Google Scholar 

  323. Jones CW, Koros WJ (1994) Carbon molecular sieve gas separation membranes. Part I. Preparation and characterization based on polyimide precursors. Carbon 32:1419–1425

    CAS  Google Scholar 

  324. Ismail AF, David LIB (2001) A review of the latest development of carbon membranes for gas separation. J Membr Sci 193:1–18

    CAS  Google Scholar 

  325. Sauf SM, Ismail AF (2004) Fabrication of carbon membranes for gas separation—a review. Carbon 42:241–259

    Google Scholar 

  326. Saufi SM, Ismail AF (2002) Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Songklanakarin J Sci Technol 24:843–854

    CAS  Google Scholar 

  327. Song C, Wang T, Qiu Y, Qiu J, Cheng H (2009) Effect of carbonization atmosphere on the structure changes of PAN carbon membranes. J Porous Mater 16:197–203

    CAS  Google Scholar 

  328. Grainger D, Hägg MB (2008) The recovery of carbon molecular sieve membranes of hydrogen transmitted in natural gas networks. Int J Hydrogen Energy 33:2379–2388

    CAS  Google Scholar 

  329. Favas EP, Kapantaidakis GC, Nolan JW, Mitropoulos AC, Kanellopoulos NK (2007) Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on Matrimid® 5218 precursor. J Mater Process Technol 186:102–110

    Google Scholar 

  330. Salleh WNW, Ismail AF (2011) Fabrication and characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation. AIChE J 58:3167–3175

    Google Scholar 

  331. Favvas EP, Kouvelos EP, Romanos GE, Pillatos GL, Mitropoulos AC, Kanellopoulos NK (2008) Characterization of highly selective microporous carbon hollow fiber membranes prepared from commercial co-polyimide. J Porous Mater 15:625–613

    CAS  Google Scholar 

  332. Rao PS, Wey MY, Tseng HH, Kumjar IA, Weng TH (2008) A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microporous Mesoporous Mater 113:499–510

    CAS  Google Scholar 

  333. Kim YK, Park HB, Lee YM (2004) Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties. J Membr Sci 343:9–17

    Google Scholar 

  334. Kim YK, Park HB, Lee YM (2005) Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone. J Membr Sci 251:159–167

    CAS  Google Scholar 

  335. Lee HJ, Suda H, Haraya K, Moon SH (2007) Gas permeation properties of carbon molecular sieving membranes derived from the polymer blend of polyphenylene oxide (PPO)/polyvinylpyrrolidone (PVP). J Membr Sci 296:139–146

    CAS  Google Scholar 

  336. Zhang B, Wang T, Wu Y, Liu Q, Liu S, Qiu J (2008) Preparation and gas permeation of composite carbon membranes from poly(phthalazinone ether sulfone ketone). Sep Purif Technol 60:259–263

    Google Scholar 

  337. Yoshimune M, Fujiwara I, Suda H, Haraya K (2005) Novel carbon molecular sieve membranes derived from poly (phenylene oxide) and its derivatives for gas separation. Chem Lett 34:958–959

    CAS  Google Scholar 

  338. Hatori H, Yamada Y, Shiraishi M (1992) Preparation of macroporous carbon films from polyimide by phase inversion method. Carbon 30:303–304

    CAS  Google Scholar 

  339. Hatori H, Shiraishi M, Nakata H, Yoshitomi S (1992) Carbon molecular sieve films from polyimide. Carbon 30:305–306

    CAS  Google Scholar 

  340. Rao MB, Sirkar S (1993) Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. J Membr Sci 85:253–254

    CAS  Google Scholar 

  341. Rao MB, Sirkar S (1996) Performance and pore characterization of nanoporous carbon membrane for gas separation. J Membr Sci 110:109–118

    CAS  Google Scholar 

  342. Rao MB, Sirkar S (1993) Nanoporous carbon membrane for gas separation. Gas Sep Purif 7:279–284

    CAS  Google Scholar 

  343. Centeno TA, Vilas JL, Fuertes AB (2004) Effect of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation. J Membr Sci 228:45–54

    CAS  Google Scholar 

  344. Acharya M, Foley HC (1991) Spray-coating of nanoporous carbon membranes for air separation. J Membr Sci 161:1–5

    Google Scholar 

  345. Centeno TA, Fuertes AB (2000) Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride). Carbon 38:1067–1073

    CAS  Google Scholar 

  346. Park HB, Lee YM (2003) Pyrolytic carbon-silica membrane: a promising membrane for improved gas separation. J Membr Sci 213:263–272

    CAS  Google Scholar 

  347. Hosseini SS, Chung TS (2009) Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. J Membr Sci 328:174–185

    CAS  Google Scholar 

  348. Zhang B, Shen G, Wu Y, Wang T, Qiu J, Xu T, Fu C (2009) Preparation and characterization of carbon membranes derived from poly(phthalazinone ether) for gas separation. Ind Eng Chem Res 48:2886–2890

    CAS  Google Scholar 

  349. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  350. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 663:603–605

    Google Scholar 

  351. Cho SJ, Shrestha SP, Lee SB, Boo JH (2014) Electrical characteristics of carbon nanotubes by plasma and microwave surface treatments. Bull Korean Chem Soc 35(3):905–907

    CAS  Google Scholar 

  352. Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y, Jiang K, Fan S (2009) Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett 9:3137–3141

    CAS  Google Scholar 

  353. Zhao YL, Stoddart JF (2009) Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res 42:1161–1171

    CAS  Google Scholar 

  354. Bernhole J, Brenner D, Buongiorno Nardelli M, Meunier V, Roland C (2002) Mechanical and electrical properties of nanotubes. Annu Rev Mater Sci 32:347–375

    Google Scholar 

  355. Sholl DS, Johnson JK (2006) Making high-flux membranes with carbon nanotubes. Science 312:1003–1004

    CAS  Google Scholar 

  356. Noy A (2013) Kinetic model of gas transport in carbon nanotube channels. J Phys Chem C 117:7656–7660

    CAS  Google Scholar 

  357. Majumder M, Ajayan PM (2010) Carbon nanotube membranes: a new frontier in membrane science. In: Drioli E, Giorno L (eds) Comprehensive membrane science and engineering. Elsevier Science, Amsterdam

    Google Scholar 

  358. Bruggen BV (2012) The separation power of nanotubes in membranes: a review. ISRN Nanotechnol 2012:1–17

    Google Scholar 

  359. Arora G, Sandler SI (2006) Air separation by single wall carbon nanotubes: mass transport and kinetic selectivity. J Chem Phys 124:084702

    Google Scholar 

  360. Chen H, Sholl DS (2006) Prediction of selectivity and flux for CH4/H2 separations using single walled carbon nanotubes as membranes. J Membr Sci 269:152–162

    CAS  Google Scholar 

  361. Ackerman DM, Skoulidas AI, Sholl DS, Johnson JK (2003) Diffusivities of Ar and Ne in carbon nanotubes. Mol Simulat 29:677–684

    CAS  Google Scholar 

  362. Skoulidas AI, Ackerman DM, Johnson JK, Sholl DS (2002) Rapid transport of gases in carbon nanotubes. Phys Rev Lett 89:185901/1–4

    Google Scholar 

  363. Kim S, Pechar TW, Marand E (2006) Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 192:330–339

    CAS  Google Scholar 

  364. Tseng HH, Kumar IA, Weng TH, Lu CY, Wey MY (2009) Preparation and characterization of carbon molecular sieve membranes for gas separation—the effect of incorporated multi-wall carbon nanotubes. Desalination 240:40–45

    CAS  Google Scholar 

  365. Kusworo TD, Ismail AF, Widiasa IN, Johari S, Sunarso S (2010) CO2 removal from biogas using carbon nanotubes mixed matrix membranes. Int J Sci Eng 1:1–6

    Google Scholar 

  366. Geim AK, Novoselov KS (2007) The rise of grapheme. Nat Mater 6:183–191

    CAS  Google Scholar 

  367. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63

    CAS  Google Scholar 

  368. Noble Foundation announcement (2010) On line at: http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/press.html

  369. Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458–2462

    CAS  Google Scholar 

  370. Jennifer C (2012) MIT news, tiny pores in graphene could give rise to membranes: new membranes may filter ware or separate biological samples. MIT News Office, 23 Oct 2012. http://newsoffice.mit.edu/2012/graphene=pores-and-membrans-1023

  371. Forbeaux I, Themlin J-M, Debever J-M (1998) Heteroepitaxial graphite on 6H-SiC(0001): interface formation through conduction-band electronic structure. Phys Rev B 58:16396–16406

    CAS  Google Scholar 

  372. Cambaz ZG, Yushin G, Osswald S, Mochalin V, Gogotsi Y (2008) Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 48:841–849

    Google Scholar 

  373. Du H, Li J, Zhang J, Su G, Li X, Zhao Y (2011) Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C 115:23261–23266

    CAS  Google Scholar 

  374. Hauser AW, Schwerdtfeger P (2012) Methane-selective nanoporous graphene membranes for gas purification. Phys Chem Chem Phys 14:13292–13298

    CAS  Google Scholar 

  375. Koeing SP, Wang L, Pellegrino J, Bunch S (2012) Selective molecular sieving through porous graphene. Nat Nanotechnol 7:728–732

    Google Scholar 

  376. Oyama ST, Lee D, Hacarlioglu P, Saraf RF (2004) Theory of hydrogen permeability in nonporous silica membranes. J Membr Sci 244:45–53

    CAS  Google Scholar 

  377. Ying J, Peng C, Lei F, Huiqian L, Huan Y, Cong R, Lei S, Changzhi G, Hai-Hu W (2008) Critical fields and anisotropy of NdFeAsO0.82F0.18 single crystals. Appl Phys Lett 93:032503

    Google Scholar 

  378. Qin X, Meng Q, Feng Y, Gao Y (2013) Graphene with line defect as a membrane for gas separation: design via a first-principles modeling. Surf Sci 607:153–158

    CAS  Google Scholar 

  379. Jiang DE, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9:4019–4024

    CAS  Google Scholar 

  380. Blankenburg S, Bieri M, Fasel R, Mullen K, Pignedoli CA, Passerone D (2010) Graphene as an atmospheric nanofilter. Small 6:2266–2271

    CAS  Google Scholar 

  381. Schrier J (2010) Helium separation using porous graphene membranes. J Phys Chem Lett 1:2284–2287

    CAS  Google Scholar 

  382. Schrier J, McClain J (2012) Thermally-driven isotope separation across nanoporous graphene. Chem Phys Lett 521:118–124

    CAS  Google Scholar 

  383. Jungthawan S, Reunchan P, Limpijumnog S (2013) Theoretical study of strained porous structures and their gas separation properties. Carbon 54:359–364

    CAS  Google Scholar 

  384. Lee J, Aluru NR (2013) Water-solubility-driven separation of gases using graphene membrane. J Membr Sci 428:546–553

    CAS  Google Scholar 

  385. Lai Z, Bonilla G, Diaz I, Nery JG, Sujaoti K, Amat MA, Kokkoli E, Terasaki O, Thompson RW, Tsapatsis M, Vlachos DG (2003) Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300:456–460

    CAS  Google Scholar 

  386. Park HB, Lee YM (2005) Fabrications and characterization of nanoporous carbon/silica membrane. Adv Mater 17:477–483

    CAS  Google Scholar 

  387. Yampolskii Y, Pinnau I, Freeman B (eds) (2006) Materials science of membrane for gas and vapor separation. John Wiley & Sons, Chichester, UK

    Google Scholar 

  388. Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Wagner EV, Freeman BD, Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318:254–258

    CAS  Google Scholar 

  389. Khayet M, Matsuura T (2011) Membrane distillation, principles and applications. Elsevier, Amsterdam

    Google Scholar 

  390. Henis JMS, Tripodi MK (1980) Multicomponent membranes for gas separation. US Patent 4230463A, 28 Oct 1980

    Google Scholar 

  391. Fritzsche AK, Cruse CA, Kesting RE, Murphy MK (1990) Hollow fiber membranes spun from lewis acid:base complexes. I. Structure determination by oxygen plasma ablation. J Appl Polym Sci 40:19–40

    CAS  Google Scholar 

  392. Kesting RE (1990) The four tires of structure in integrally skinned phase inversion membranes and their relevance to the various separation regimes. J Appl Polym Sci 41:2739–2752

    CAS  Google Scholar 

  393. Chung TS, Teoh SK, Hu X (1997) Formation of ultrathin high-performance hollow fiber membranes. J Membr Sci 133:161–175

    CAS  Google Scholar 

  394. Shieh JJ, Chung TS, Wang R, Srinivasan MP, Paul DR (2001) Gas separation performance of poly(4-vinylpyridine)/polyetherimide composite hollow fibers. J Membr Sci 182:111–123

    CAS  Google Scholar 

  395. Husain S (2013) Methods of preparing a crosslinked fiber membrane. US Patent 20130239805 A1, 19 Sept 2013

    Google Scholar 

  396. Baker WR (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411

    CAS  Google Scholar 

  397. Kesting RE, Cruse CA, Fritzsche AK, Malon RF, Murphy MK, Handermann AC (1992) Asymmetric gas separation membranes having graded density skins. EP0257012 B1, 7 Oct 1992

    Google Scholar 

  398. Kusakabe K, Li ZY, Maeda H, Morooka S (1995) Preparation of supported composite membrane by pyrolysis of polycarbosilane for gas separation at high temperature. J Membr Sci 103:175–180

    CAS  Google Scholar 

  399. Ren X, Ren J, Deng M (2012) Poly(amide-6-b-ethylene oxide) membranes for sour gas separation. Sep Purif Technol 89:1–8

    CAS  Google Scholar 

  400. Jiang X, Ding J, Kumar A (2008) Polyurethane-poly(vinylidene fluoride) (PU-PVDF) thin film composite membranes for gas separation. J Membr Sci 323:371–378

    CAS  Google Scholar 

  401. Gupta Y, Hellgardt K, Wakeman RJ (2006) Enhanced permeability of polyaniline based nano membranes for gas separation. J Membr Sci 282:60–70

    CAS  Google Scholar 

  402. Lopez JL, Matson SL, Marchese J, Quinn JA (1986) Diffusion through composite membranes: a two dimensional analysis. J Membr Sci 27:301–325

    CAS  Google Scholar 

  403. Henis JMS, Tripodi MK (1980) A novel approach to gas separations using composite hollow fiber membranes. Sep Sci Technol 15:1059–1068

    CAS  Google Scholar 

  404. Henis JMS, Tripodi MK (1981) Composite hollow fiber membranes for gas separation: the resistance model approach. J Membr Sci 8:233–246

    CAS  Google Scholar 

  405. Reid BD, Ebron VHM, Musselman IH, Ferraris JP, Balkus JKJ (2002) Enhanced gas selectivity in thin film composite membranes of poly(3-(2-acetoxyethyl)thiophene). J Membr Sci 195:181–192

    CAS  Google Scholar 

  406. Way JD, Noble RD, Flynn TM, Sloan ED (1982) Liquid membrane transport: a survey. J Membr Sci 12:239–259

    CAS  Google Scholar 

  407. Kocherginsky NM, Yang Q, Seelam L (2007) Recent advances in supported liquid membrane technology. Sep Purif Technol 53:171–177

    CAS  Google Scholar 

  408. Ward WJ, Robb WL (1967) Carbon dioxide-oxygen separation: facilitated transport of carbon dioxide across a liquid film. Science 156:1481–1484

    CAS  Google Scholar 

  409. Baker RW, Roman I, Lonsdale HK (1987) Liquid membranes for the production of oxygen enriched air. J Membr Sci 31:15–29

    CAS  Google Scholar 

  410. Lee SH, Kim BS, Lee EW, Park YI, Lee JM (2006) The removal of acid gases from crude natural gas by using novel supported liquid membranes. Desalination 200:21–22

    CAS  Google Scholar 

  411. Chen XS, Nishide H, Tsuchida E (1996) Analysis of facilitated oxygen transport through in a liquid membrane of hemoglobin. Bull Chem Soc Jpn 69:255–259

    CAS  Google Scholar 

  412. Castro-Domínguez B, Leelachaikul P, Takagaki A, Sugawara T, Kikuchi R, Oyama ST (2013) Perfluorocarbon-based supported liquid membrane for O2/N2. Sep Purif Technol 118:19–24

    Google Scholar 

  413. Deetz DW (1987) Stabilized ultrathin liquid membranes for gas separation. In: Noble RD, Way JD (eds) Liquid membranes, ACS symposium series. American Chemical Society, Washington, DC

    Google Scholar 

  414. Ward WJ (1970) Analytical and experimental studies of facilitated transport. AIChE J 16:405–410

    CAS  Google Scholar 

  415. Donaldson TL, Quinn JA (1975) Carbon dioxide transport through enzymatically active synthetic membranes. Chem Eng Sci 30:103–115

    CAS  Google Scholar 

  416. Ghai RK, Ertl H, Dullien FAL (1973) Liquid diffusion of nonelectrolytes, Part I. AIChE J 19:881–900

    CAS  Google Scholar 

  417. Ghai RK, Ertl H, Dullien FAL (1974) Liquid diffusion of nonelectrolytes, Part II. AIChE J 20:1–20

    Google Scholar 

  418. Reid RC, Prausnitz JM, Sherwood TK (1977) The properties of gases and liquids. McGraw-Hill, New York

    Google Scholar 

  419. Cserjési P, Nemestóthy N, Vass A, Csanádi Z, Bélafi-Bako K (2009) Study on gas separation by supported liquid membranes applying novel ionic liquids. Desalination 246:370–374

    Google Scholar 

  420. Seeberger A, Kern C, Uerdingen M, Jess A (2007) Gas separation by supported ionic liquid membranes. In: DGMK-conference, opportunities and challenges at the interface between petrochemistry and refinery, 10–12 Oct 2007, Hamburg, Germany

    Google Scholar 

  421. Cserjési P, Nemestóthy N, Vass A, Csanádi Z, Bélafi-Bakó K (2009) Study on gas separation by supported liquid membranes applying novel ionic liquids. Desalination 245:743–747

    Google Scholar 

  422. Gan Q, Rooney D, Xue M, Thompson G, Zou Y (2006) An experimental study of gas transport and separation properties of ionic liquids supported on nanofiltration membranes. J Membr Sci 280:948–956

    CAS  Google Scholar 

  423. Neves L, Nemestóthy N, Alves VD, Cserjési P, Bélafi-Bakó K, Coelhoso I (2009) Separation of bio-hydrogen by supported ionic liquid membranes. Desalination 240:311–315

    CAS  Google Scholar 

  424. Neves L, Dabek W, Coelhoso IM, Crespo JG (2006) Design of new selective Nafion membranes using room temperature ionic liquids. Desalination 199:525–526

    CAS  Google Scholar 

  425. Cserjési P, Nemestóthy N, Bélafi-Bakó K (2010) Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids. J Membr Sci 349:6–11

    Google Scholar 

  426. Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    CAS  Google Scholar 

  427. Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kuboto F, Goto M (2008) CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane. J Membr Sci 314:1–4

    CAS  Google Scholar 

  428. Zhao W, He G, Nie F, Zhang L, Feng H, Liu H (2012) Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation. J Membr Sci 411–412:73–80

    Google Scholar 

  429. Luis P, Neves LA, Afonso CAM, Coelhoso IM, Crespo JG, Garea A, Irabiena A (2009) Facilitated transport of CO2 and SO2 through supported ionic liquid membranes (SILMs). Desalination 245:485–493

    CAS  Google Scholar 

  430. Majumdar S, Guha AK, Sirkar KK (1998) A new liquid membrane technique for gas separation. AIChE J 34:1135–1245

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ismail, A.F., Khulbe, K.C., Matsuura, T. (2015). Gas Separation Membrane Materials and Structures. In: Gas Separation Membranes. Springer, Cham. https://doi.org/10.1007/978-3-319-01095-3_3

Download citation

Publish with us

Policies and ethics