Skip to main content

Direct Problem: The Euler Equation Approach

  • Chapter
  • First Online:
Discrete–Time Stochastic Control and Dynamic Potential Games

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 1383 Accesses

Abstract

This chapter concerns deterministic and stochastic nonstationary discrete-time optimal control problems (OCPs) with an infinite horizon. We show, using Gâteaux differentials, that the so-called Euler equation (EE) and a transversality condition (TC) are necessary conditions for optimality. In particular, the TC is obtained in a more general form and under milder hypotheses than in previous works. Sufficient conditions are also provided. We find closed-form solutions to several (discounted) stationary and nonstationary control problems. The results in this chapter come from González–Sánchez and Hernández–Lerma [37].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acemoglu, D. (2009) Introduction to Modern Economic Growth, Princeton University Press, Princeton, NJ.

    Google Scholar 

  2. Bar-Ness, Y. (1975) The discrete Euler equation on the normed linear space l n 1, Int. J. Control 21, pp. 625–640.

    Google Scholar 

  3. Cadzow, J.A. (1970) Discrete calculus of variations, Int. J. Control 11, pp. 393–407.

    Google Scholar 

  4. Cruz–Suárez, H., Montes-de-Oca, R. (2006) Discounted Markov control processes induced by deterministic systems, Kybernetika 42, pp. 647–664.

    Google Scholar 

  5. Cruz–Suárez, H., Montes-de-Oca, R. (2008) An envelope theorem and some applications to discounted Markov decision processes, Math. Meth. Oper. Res. 67, pp. 299–321.

    Google Scholar 

  6. Ekeland, I., Scheinkman, J.A. (1986) Transversality conditions for some infinite horizon discrete time optimization problems, Math. Oper. Res. 11, pp. 216–229.

    Google Scholar 

  7. Elaydi, S. (2005) An Introduction to Difference Equations, 3rd ed., Springer–Verlag, New York.

    Google Scholar 

  8. Engwerda, J. (2005) LQ Dynamic Optimization and Differential Games, John Wiley and Sons, Chichester.

    Google Scholar 

  9. Flåm, S., Fougères, A. (1991) Infinite horizon programs; Convergence of approximate solutions, Ann. Oper. Res. 29, pp. 333–350.

    Google Scholar 

  10. Fleming, W.H., Rishel, R.W. (1975) Deterministic and Stochastic Optimal Control, Springer–Verlag, New York.

    Google Scholar 

  11. González–Sánchez, D., Hernández–Lerma, O. (2013) On the Euler equation approach to discrete–time nonstationary optimal control problems. To appear in Journal of Dynamics and Games. Published online doi:10.3934/jdg.2014.1.57

  12. Guo, X., Hernández-del-Valle, A., Hernández–Lerma, O. (2011) Nonstationary discrete–time deterministic and stochastic control systems: Bounded and unbounded cases, Systems Control Lett. 60, pp. 503–509.

    Google Scholar 

  13. Kamihigashi, T. (2002) A simple proof of the necessity of the transversality condition, Econ. Theory 20, pp. 427–433.

    Google Scholar 

  14. Kamihigashi, T. (2008) Transversality conditions and dynamic economic behaviour, The New Palgrave Dictionary of Economics, 2nd ed., edited by Durlauf, S.N., Blume, L.E., pp. 384–387, Palgrave Macmillan, Hampshire, UK.

    Google Scholar 

  15. Kelley, W.G., Peterson, A.C. (1991) Difference Equations. An Introduction with Applications, Academic Press, San Diego.

    Google Scholar 

  16. Le Van, C., Dana, R.-A. (2003) Dynamic Programming in Economics, Kluwer, Boston.

    Google Scholar 

  17. Levhari, D., Mirman, L.D. (1980) The great fish war: an example using dynamic Cournot–Nash solution, Bell J. Econom. 11, pp. 322–334.

    Google Scholar 

  18. Ljungqvist, L., Sargent, T.J. (2004) Recursive Macroeconomic Theory, 2nd ed., MIT Press, Cambridge, MA.

    Google Scholar 

  19. Luenberger, D.G. (1969) Optimization by Vector Space Methods, Wiley, New York.

    Google Scholar 

  20. Okuguchi, K. (1981) A dynamic Cournot–Nash equilibrium in fishery: The effects of entry, Decis. Econ. Finance 4, pp. 49–64.

    Google Scholar 

  21. Rudin, W. (1976) Principles of Mathematical Analysis, 3rd ed., McGraw–Hill, New York.

    Google Scholar 

  22. Schochetman, I., Smith, R.L. (1992) Finite-dimensional approximation in infinite-dimensional mathematical programming, Math. Programming 54, pp. 307–333.

    Google Scholar 

  23. Stokey, N.L., Lucas, R.E., Prescott, E.C. (1989) Recursive Methods in Economic Dynamics, Harvard University Press, Cambridge, MA.

    Google Scholar 

  24. Sydsæter, K., Hammond, P.J., Seierstad, A., Strøm, A. (2008) Further Mathematics for Economic Analysis, 2nd ed., Prentice–Hall, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 David González-Sánchez and Onésimo Hernández-Lerma

About this chapter

Cite this chapter

González-Sánchez, D., Hernández-Lerma, O. (2013). Direct Problem: The Euler Equation Approach. In: Discrete–Time Stochastic Control and Dynamic Potential Games. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-01059-5_2

Download citation

Publish with us

Policies and ethics