Skip to main content

Abstract

This chapter lays the theoretical foundations for the approach to spatio-temporal modeling from data typically found in conflict data sets. The chapter begins by outlining the basic principles of point-process theory, starting from the definition of the Poisson distribution and ending with a description of the log-Gaussian Cox process and the point-process likelihood function. The chapter proceeds to discuss two important classes of spatio-temporal models, the stochastic partial differential equation (SPDE) and the stochastic integro-difference equation (SIDE). Dimensionality reduction techniques to reduce these models into state-space form are then given. Recrusive estimation algorithms for estimation with a state-space model are then derived and are followed by a strategy to include unknown parameters within the estimation framework through variational Bayes. The chapter concludes with a section on implementation tools. This includes details on non-parametric methods for obtaining descriptive statistics from events, a basis function placement method and a variational-Laplace algorithm for inference under the point-process likelihood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We only consider the slightly restrictive assumption that the measure admits a density.

  2. 2.

    The logarithm is used to ensure positivity of the resulting intensity function.

  3. 3.

    This is not to be confused with the method of moments associated with parameter estimation.

  4. 4.

    The whole field of graphical models and graphical statistics is concerned with inference algorithms for probability distributions exhibiting specific conditional independence relationships, cf. Bishop (2006).

  5. 5.

    For point processes we define \({{\varvec{y}}}_k\) as the spatial coordinates of points in \(\fancyscript{Y}_k\).

References

  • Anderson BDO, Moore J, Barratt J (1979) Optimal filtering. Prentice-Hall, New Jersey

    Google Scholar 

  • Attias H (1999) Inferring parameters and structure of latent variable models by variational Bayes. In: Proceedings of the 15th conference on uncertainty in artificial intelligence, pp 21–30

    Google Scholar 

  • Attias H (2000) A variational Bayesian framework for graphical models. In: Advances in neural information processing systems, vol 12. pp 209–215

    Google Scholar 

  • Baddeley AJ, Møller J, Waagepetersen R (2000) Non-and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat Neerl 54(3):329–350

    Article  MATH  Google Scholar 

  • Beal MJ (2003) Variational algorithms for approximate Bayesian inference. PhD thesis, University College London, UK

    Google Scholar 

  • Beal MJ, Falciani F, Ghahramani Z, Rangel C, Wild DL (2005) A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21(3):349

    Article  Google Scholar 

  • Berliner LM, Wikle CK, Cressie N (2000) Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling. J Climate 13(22):3953–3968

    Article  ADS  Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    MATH  Google Scholar 

  • Bracewell RN (2000) The Fourier transform & its applications, 3rd edn. McGraw-Hill, Singapore

    Google Scholar 

  • Briers M, Doucet A, Maskell S (2004) Smoothing algorithms for state-space models. Technical Report, TR-CUED-F-INFENG 498, University of Cambridge

    Google Scholar 

  • Brix A, Møller J (2001) Space-time multi type log Gaussian Cox processes with a view to modelling weeds. Scand J Stat 28(3):471–488

    Article  MATH  Google Scholar 

  • Brix A, Diggle PJ (2001) Spatiotemporal prediction for log-Gaussian Cox processes. J Roy Stat Soc B 63(4):823–841

    Article  MathSciNet  MATH  Google Scholar 

  • Carmona RA (1998) Stochastic partial differential equations: six perspectives. American Mathematical Society, Providence

    Google Scholar 

  • Coleman MP (2005) An introduction to partial differential equations with Matlab. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Cover TM, Thomas JA (2012) Elements of information theory. Wiley & Sons, New York

    Google Scholar 

  • Cressie NAC, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New Jersey

    MATH  Google Scholar 

  • Cseke B, Heskes T (2011) Approximate marginals in latent Gaussian models. J Mach Learn Res 12:417–454

    MathSciNet  Google Scholar 

  • Cseke B, Zammit-Mangion A, Sanguinetti G, Heskes T (2013) Sparse approximations in spatio-temporal point-process models. http://arxiv.org/abs/1305.4152v2. Accessed 08 June 2013

  • da Prato G, Zabczyk J (1993) Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge

    Google Scholar 

  • Dalang RC, Frangos NE (1998) The stochastic wave equation in two spatial dimensions. Ann Probab 26(1):187–212

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  • Dewar M (2010) Visualisation of activity in Afghanistan using the Wikileaks data. http://vimeo.com/14200191. Accessed 28 June 2013

  • Dewar M, Scerri K, Kadirkamanathan V (2009) Data-driven spatio-temporal modeling using the integro-difference equation. IEEE Trans Sig Proc 57(1):83–91

    Article  MathSciNet  Google Scholar 

  • Diggle P (1985) A kernel method for smoothing point process data. App Stat 34:138–147

    Article  MATH  Google Scholar 

  • Evans LC (1998) Partial Differential Equations. Graduate studies in mathematics, vol. 19. American Mathematical Society, Providence, RI

    Google Scholar 

  • Freestone DR et al (2011) A data-driven framework for neural field modeling. NeuroImage 56(3):1043–1058

    Article  Google Scholar 

  • Grossmann C, Roos HG, Stynes M (2007) Numerical treatment of partial differential equations. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Harrington RF (1993) Field computation by moments method. IEEE Press, Piscataway

    Book  Google Scholar 

  • Hausenblas E (2003) Approximation for semilinear stochastic evolution equations. Potential Anal 18(2):141–186

    Article  MathSciNet  MATH  Google Scholar 

  • Jazwinski AH (1970) Stochastic processes and filtering theory. Academic Press, London

    MATH  Google Scholar 

  • Kingman JFC (1992) Poisson processes, vol 3. Clarendon Press, Oxford

    Google Scholar 

  • Kot M, Schaffer WM (1986) Discrete-time growth-dispersal models. Math Biosci 80(1):109–136

    Article  MathSciNet  MATH  Google Scholar 

  • Lindgren F, Rue H, Lindström J (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J Roy Stat Soc B 73(4):423–498

    Article  MATH  Google Scholar 

  • McCormick M, Allen P, Dant A (2010) Afghanistan war logs: IED attacks on civilians, coalition and Afghan troops. http://www.guardian.co.uk/world/datablog/interactive/2010/jul/26/ied-afghanistan-war-logs. Accessed 30 June 2013

  • Minka T (2000) Old and new matrix algebra useful for statistics. http://research.microsoft.com/~minka/papers/matrix/. Accessed 30 June 2013

  • Mohler G (2013) Modeling and estimation of multi-source clustering in crime and security data. Ann App Stat Accepted for publicaton

    Google Scholar 

  • Møller J, Syversveen AR, Waagepetersen RP (1998) Log Gaussian Cox processes. Scand J Stat 25(3):451–482

    Article  Google Scholar 

  • Møller J, Waagepetersen RP (2004) Statistical inference and simulation for spatial point processes. CRC Press, Boca Raton

    Google Scholar 

  • O’Loughlin J, Witmer FDW, Linke AM, Thorwardson N (2010b) Peering into the fog of war: the geography of the Wikileaks Afghanistan war logs, 2004–2009. Eurasian Geogr Econ 51(4):472–495

    Article  Google Scholar 

  • Park J, Sandberg I (1991) Universal approximation using radial-basis-function networks. Neural Compu 3:246–257

    Article  Google Scholar 

  • Prévôt C, Röckner M (2007) A concise course on stochastic partial differential equations. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    MATH  Google Scholar 

  • Ross SM (2006) Introduction to probability models. Academic press, London

    MATH  Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J Roy Stat Soc B 71:319–392

    Article  MathSciNet  MATH  Google Scholar 

  • Sanguinetti G, Lawrence ND, Rattray M (2006) Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities. Bioinformatics 22(22):2775–2781

    Article  Google Scholar 

  • Sanner RM, Slotine JJE (1992) Gaussian networks for direct adaptive control. IEEE Trans Neural Networ 3(6):837–863

    Article  Google Scholar 

  • Scerri K (2010) A systems approach to spatio-temporal modelling. PhD thesis, University of Sheffield

    Google Scholar 

  • Scerri K, Dewar M, Kadirkamanathan V (2009) Estimation and model selection for an IDE-based spatio-temporal model. IEEE Trans Sig Proc 57(2):482–492

    Article  MathSciNet  Google Scholar 

  • Simpson D, Illian J, Lindgren F, Sørbye S, Rue H (2011) Going off grid: Computationally efficient inference for log-Gaussian Cox processes. http://arxiv.org/abs/1111.0641. Accessed 08 June 2013

  • Šmídl V, Quinn A (2005) The variational bayes method in signal processing. Springer-Verlag, New York

    Google Scholar 

  • Smith AC, Brown EN (2003) Estimating a state-space model from point process observations. Neural Compu 15(5):965–991

    Article  MATH  Google Scholar 

  • Storkey AJ (1999) Truncated covariance matrices and Toeplitz methods in Gaussian processes. In: Proceedings of the international conference on artificial neural networks, vol 1. pp 55–60

    Google Scholar 

  • Stoyan D, Stoyan H (1994) Fractals, random shapes, and point fields: methods of geometrical statistics. Wiley, New York

    MATH  Google Scholar 

  • Stroud JR, Müller P, Sanso B (2001) Dynamic models for spatiotemporal data. J Roy Stat Soc B 63:673–689

    Article  MATH  Google Scholar 

  • Vermaak J, Lawrence N, Perez P (2003) Variational inference for visual tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 1. pp 773–780

    Google Scholar 

  • Wikle C, Cressie N (1999) A dimension-reduced approach to space-time Kalman filtering. Biometrika 86(4):815–829

    Article  MathSciNet  MATH  Google Scholar 

  • Wikle CK (2002) A kernel-based spectral model for non-Gaussian spatio-temporal processes. Stat Model 2(4):299–314

    Article  MathSciNet  MATH  Google Scholar 

  • Zammit Mangion A, Yuan K, Kadirkamanathan V, Niranjan M, Sanguinetti G (2011b) Online variational inference for state-space models with point-process observations. Neural Compu 23(8):1967–1999

    Article  MathSciNet  MATH  Google Scholar 

  • Zammit Mangion A, Sanguinetti G, Kadirkamanathan V (2011a) A variational approach for the online dual estimation of spatiotemporal systems governed by the IDE. In: Proceedings of the 18th IFAC world congress, pp 3204–3209

    Google Scholar 

  • Zammit-Mangion A, Sanguinetti G, Kadirkamanathan V (2012b) Variational estimation in spatiotemporal systems from continuous and point-process observations. IEEE Trans Sig Proc 60(7):3449–3459

    Article  MathSciNet  Google Scholar 

  • Zammit-Mangion A, Dewar M, Kadirkamanathan V, Sanguinetti G (2012a) Point process modelling of the Afghan War Diary. P Natl Acad Sci USA 109(31):12,414–12,419

    Google Scholar 

  • Zhukov YM (2012) Roads and the diffusion of insurgent violence: the logistics of conflict in Russia’s North Caucasus. Polit Geogr 31(3):144–156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Zammit-Mangion .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Zammit-Mangion, A., Dewar, M., Kadirkamanathan, V., Flesken, A., Sanguinetti, G. (2013). Theory. In: Modeling Conflict Dynamics with Spatio-temporal Data. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-01038-0_2

Download citation

Publish with us

Policies and ethics