Skip to main content

General Response Theory for the Polarizable Continuum Model

  • Chapter
  • First Online:
Molecular Response Functions for the Polarizable Continuum Model

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMAGNET))

Abstract

This chapter presents the general aspects of the response theory for molecular solutes in the presence of time-dependent perturbing fields: (i) the non-equilibrium solvation, (ii) the variational formulation of the time-dependent non-linear QM problem, and (iii) the connection of the molecular response functions with their macroscopic counterparts. The linear and quadratic molecular response functions are described at the coupled-cluster level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The concept of non-equilibrium solvation has been introduced to describe the solvent polarization in processes involving dynamic, or sudden, variations of solute charge distribution of the solute, and it takes into account that during the time-scale of a fast event not all the degrees of freedoms of the solvent molecules (nuclear, translational, rotational,vibrational; electronic) are able to respond to the variations of the charge distribution of the solute (see Appendix).

  2. 2.

    We assume that \(V^{\prime }(t)\) is applied adiabatically so that it vanishes at \(t=-\infty .\)

  3. 3.

    The time-dependent wavefunction (3.8) are also known as Floquet states [2428], a particular set of solutions of the time-dependent Schrödinger equation for systems under the influence of an external time-dependent periodic perturbation.

  4. 4.

    The time-average over a period T for a general time-dependent function \(g(t)\) is defined as

    $$\begin{aligned} \{g(t)\}_T=\frac{1}{T}\int ^{T/2}_{-T/2}g(t)dt \nonumber \end{aligned}$$
  5. 5.

    Being the perturbing operator \(V(t)\) Hermitian, we have that: \(X^\dag =X\), \(\omega _{-j}=-\omega _j\), \(\varepsilon (\omega _j)^*=\varepsilon (\omega _{-j}). \)

  6. 6.

    We here consider the Molecular Orbital (MO) “unrelaxed” approach in which the reference state does not depend on the perturbation \(V(t).\)

  7. 7.

    The expansions (3.18a and 3.18b) imply an expansion in time-dependent polarization charges of (3.15):

    $$\begin{aligned} {\bar{ \mathbf Q}}_N(t)={\bar{ \mathbf Q}}_N(t)^{(0)}+{\bar{ \mathbf Q}}_N(t)^{(1)}+\cdots \nonumber \end{aligned}$$

    where \({\bar{ \mathbf Q}}_N(t)^{(n)}\) are terms of n-th order in the perturbation.

  8. 8.

    The variational criteria at the zero and first order are satisfied when the Coupled-cluster wavefunctions are solution of the PCM coupled-cluster Eqs. (1.24) and (1.28).

  9. 9.

    Third- and second-order derivatives of the \(T,\varLambda \) amplitudes are eliminated, respectively, by the zero- and first order stationarity of the quasi-free-energy functional \(\varDelta G_{CC}.\)

  10. 10.

    The polarization charges operator \({\mathbf Q}_N^{|\omega _X\,+\,\omega _Y|}\) is evaluated from Eq. (3.27) using the dielectric permittivity \(\varepsilon (|\omega _X+\omega _Y|)\) of the solvent at the frequency \(|\omega _X+\omega _Y|\). Therefore, Eq. (3.34a) is able to describe the non-equilibrium solvation effects in the quadratic response function describing general second-order molecular processes [4] (see Appendix B in Ref. [19]).

  11. 11.

    The contribution is due to the effect of the boundary condition of the cavity on the Maxwell field.

  12. 12.

    The charges \(\tilde{\mathbf{Q}}^{\mathbf{E}}_i\) are obtained as solution of the electrostatic problem (i.e. the Laplace problem) describing the Maxwell field \({\mathbf{E}}\) in the presence of the void cavity. The corresponding integral equation with domain on the PCM cavity boundary \(\Gamma \) is:

    $$\begin{aligned} \left( 2\pi \frac{\epsilon +1}{\epsilon -1} +D^*\right) \sigma _i^E(\mathbf{s})=-E_in_i(\mathbf{s})\ \mathbf{s}\subset \Gamma \end{aligned}$$

    where \(E_i\) and \(n_i\) are, respectively the i-th Cartesian component of the Maxwell field \(\mathbf{E}\) and of a unit vector \(\mathbf{n}(r)\) normal to the cavity surface at the point \(\mathbf{s}\), and \(\sigma _i^E(\mathbf{s})\) is the apparent surface charge density determined by the Maxwell field.

    The discretization of the the apparent surface charge density \(\sigma _i^E(\mathbf{s})\) leads then to the discrete set of charges \(\tilde{\mathbf{Q}}^{\mathbf{E}}_i\).

References

  1. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005)

    Article  CAS  Google Scholar 

  2. J. Olsen, P. Jørgensen, in Modern electronic structure theory, vol. 2, ed. by D. Yarkony (World Scientific, Singapore, 1995), p. 857

    Chapter  Google Scholar 

  3. T. Helgaker, S. Coriani, P. JørgensenK, J. Olsen Kristensen, K. Ruud, Chem. Rev. 112, 543 (2012)

    Article  CAS  Google Scholar 

  4. R. Cammi, M. Cossi, B. Mennucci, J. Tomasi, J. Chem. Phys. 105, 10556 (1996)

    Article  CAS  Google Scholar 

  5. R. Cammi, B. Mennucci, J. Chem. Phys. 110, 9877 (1999)

    Article  CAS  Google Scholar 

  6. J. Tomasi, R. Cammi, B. Mennucci, Int. J. Quantum Chem. 75, 783 (1999)

    Article  CAS  Google Scholar 

  7. B. Mennucci, J. Tomasi, R. Cammi, J.R. Cheesman, M.J. Frisch, F.S. Devlin, S. Gabriel, P.J. Stephens, J. Chem. Phys. A 106, 6102 (2002)

    Google Scholar 

  8. R. Cammi, B. Mennucci, J. Tomasi, J. Phys. Chem. A 104, 5631 (2000)

    Article  CAS  Google Scholar 

  9. M. Cossi, V. Barone, J. Chem. Phys. 115, 4701 (2001)

    Article  Google Scholar 

  10. R. Cammi, L. Frediani, B. Mennucci, K., Rudd. J. Chem. Phys. 119, 5818 (2003)

    Article  CAS  Google Scholar 

  11. C. Cappelli, B. Mennucci, J. Tomasi, R. Cammi, A. Rizzo, G.L.J.A., Rikken, R. Mathevet, C. Rizzo. J. Chem. Phys. 118, 10712 (2003)

    Article  CAS  Google Scholar 

  12. C. Cappelli, B. Mennucci, R. Cammi, A. Rizzo, J. Phys. Chem. B 109, 18706 (2005)

    Article  CAS  Google Scholar 

  13. L. Frediani, Z. Rinkevicius, H. Ågren. J. Chem. Phys. 122, 244104 (2005)

    Google Scholar 

  14. B. Jansík, A. Rizzo, L. Frediani, K. Ruud, S. Coriani, J. Chem. Phys. 125, 234105 (2006)

    Article  Google Scholar 

  15. A. Rizzo, L. Frediani, K. Ruud, J. Chem. Phys. 127, 164321 (2007)

    Article  Google Scholar 

  16. K. Zhao, L. Ferrighi, L. Frediani, C.-K. Wang, Y. Luo, J. Chem. Phys. 126, 204509 (2007)

    Article  Google Scholar 

  17. L. Ferrighi, L. Frediani, E. Fossgaard, K. Ruud, J. Chem. Phys. 127, 244103 (2007)

    Article  Google Scholar 

  18. N. Lin, L. Ferrighi, X. Zhao, K. Ruud, A. Rizzo, Y. Luo, J. Phys. Chem. B 112, 4703 (2008)

    Article  CAS  Google Scholar 

  19. R. Cammi, Int. J. Quantum Chem. 112, 2547 (2012)

    Article  CAS  Google Scholar 

  20. R. Cammi, Adv. Quantum Chem. 64, 1 (2012)

    Article  CAS  Google Scholar 

  21. R.A. Marcus, J. Phys. Chem. 24, 966 (1956); (b) M.D. Newton, H.L. Friedman, J. Chem. Phys. 88, 4460(1988); (c) H.J. Kim, J.T. Hynes, J. Chem. Phys. 93, 5194(1990); (d) M.V. Basilevsky, G.E. Chudinov, Chem. Phys. 144, 155 (1990); (e) M.A. Aguilar, F.J. Olivares del Valle, J. Tomasi, J. Chem. Phys. 98, 7375(1993); (f) D.G. Truhlar, G.K. Schenter, B.C. Garrett, J. Chem. Phys. 98, 5756(1993); (g) R. Cammi, J. Tomasi, Int. J. Quantum Chem. (Symposium) 29, 465(1995); (h) C.P. Hsu, X. Song, R.A. Marcus, J. Phys. Chem. B 101, 2546 (1997); (i) M. Caricato, B. Mennucci, J. Tomasi, F. Ingrosso, R. Cammi, S. Corni, G. Scalmani. J. Chem. Phys. 124, 124520 (2006)

    Article  Google Scholar 

  22. R. Cammi, J. Tomasi, Int. J. Quantum Chem. 60, 297 (1996)

    Article  CAS  Google Scholar 

  23. J. Frenkel, Wave Mechanics: Advanced General Theory (Clarendon Press, Oxford, 1934)

    Google Scholar 

  24. H. Sambe, Phys. Rev. A 7, 2203 (1973)

    Article  Google Scholar 

  25. P.W. Langhoff, S.T. Epstein, M. Karplus, Rev. Mod. Phys. 105, 602 (1972)

    Article  Google Scholar 

  26. F. Aiga, K. Sasagane, R. Itoh, J. Chem. Phys. 99, 3779 (1993)

    Article  CAS  Google Scholar 

  27. K. Sasagane, F. Aiga, R. Itoh, J. Chem. Phys. 99, 3738 (1993)

    Article  CAS  Google Scholar 

  28. F. Aiga, T. Tada, R. Yoshimura, J. Chem. Phys. 111, 2878 (1999)

    Article  CAS  Google Scholar 

  29. O. Christiansen, P. Jørgensen, C. Hättig, Int. J. Quantum Chem. 68, 1 (1998)

    Article  CAS  Google Scholar 

  30. R. Wortmann, K. Elich, S. Lebus, W. Liptay, P. Borowicz, A. Grabowska, J. Phys. Chem. 92, 9724 (1992)

    Article  Google Scholar 

  31. R. Cammi, B. Mennucci, J. Tomasi, J. Phys. Chem. A 102, 870 (1998)

    Article  CAS  Google Scholar 

  32. R. Cammi, B. Mennucci, J. Tomasi, J. Phys. Chem. A 104, 4690 (1998)

    Article  Google Scholar 

  33. R. Cammi, B. Mennucci, in Continuum Solvation Models in Chemical Physics, ed. by B. Mennucci, R. Cammi (Wiley, Chichester, 2007), p. 238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cammi .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Cammi, R. (2013). General Response Theory for the Polarizable Continuum Model. In: Molecular Response Functions for the Polarizable Continuum Model. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-00987-2_3

Download citation

Publish with us

Policies and ethics