Skip to main content

In-Situ Characterization of Strain in Lithium Ion Battery Anodes

  • Conference paper
  • First Online:
Experimental Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 6

Abstract

Anode material expansion and cracking is a well-known issue with high-capacity, rechargeable lithium ion battery systems. Substantial strains develop within the anode during both the lithium ion infusion and removal processes. In this work, a custom configuration of the standard CR2032 coin cell battery is used to allow in-situ monitoring of in-plane strain development within the anode via digital image correlation. An anode thin films consisting of amorphous silicon deposited on a metal substrate is tested to determine the influence of film adhesion and battery cycling parameters on the strain-to-failure behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagaura T, Tozawa K (1990) Lithium ion rechargeable battery. Prog Batteries Solar Cells 9:209

    Google Scholar 

  2. Boukamp BA, Lesh GC, Huggins RA (1981) All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc 128:725–729

    Article  Google Scholar 

  3. Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid State Lett 7(5):A93–A96

    Article  Google Scholar 

  4. Park CM, Kim JH, Kim H, Sohn HJ (2010) Li-alloy based anode materials for secondary batteries. Chem Soc Rev 39(8):3115–3141

    Article  Google Scholar 

  5. Kasavajjula U, Wang CS, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1009

    Article  Google Scholar 

  6. Li J, Lewis RB, Dahn JR (2007) Sodium carboxymethyl cellulose – a potential binder for Si negative electrodes for Li-ion batteries. Electrochem Solid State Lett 10(2):A17–A20

    Article  Google Scholar 

  7. Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2006) Surface modifications of electrode materials for lithium ion batteries. Solid State Sci 8(2):113–128, February

    Article  Google Scholar 

  8. Maranchi JP, Hepp AF, Kumta PN (2003) High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem Solid State Lett 6(9):A198–A201

    Article  Google Scholar 

  9. Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35

    Article  Google Scholar 

  10. Kim H, Seo M, Park MH, Cho J (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Edit 49(12):2146–2149

    Article  Google Scholar 

  11. Xiao X, Liu P, Verbrugge MW, Haftbaradarab H (2010) Gao HImproved cycling stability of solicon thin film electrodes through patterning for high energy density lithium batteries. J Power Sources 196(3):1409–1416

    Google Scholar 

  12. Sethuraman VA, Chon MJ, Shimshak M, Srinivasan V, Guduru PR (2010) In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J Power Sources 195:5062–5066

    Article  Google Scholar 

  13. Sethuraman VA, Chon MJ, Shimshak M, Van Winkle N, Guduru PR (2010) In situ measurements of the biaxial modulus of Si anode for Li-ion batteries. Electrochem Commun 12:1614–1617

    Article  Google Scholar 

  14. Qi Y, Harris SJ (2010) In situ observation of strains during lithiation of a graphite electrode. J Electrochem Soc 157(6):A741–A747

    Article  Google Scholar 

  15. Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SRS (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139, August

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jubin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Chen, J., Berfield, T.A. (2014). In-Situ Characterization of Strain in Lithium Ion Battery Anodes. In: Tandon, G., Tekalur, S., Ralph, C., Sottos, N., Blaiszik, B. (eds) Experimental Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-00873-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00873-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00872-1

  • Online ISBN: 978-3-319-00873-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics