Skip to main content

Forecasting of Discrete Time Series

  • Chapter
  • First Online:
Robustness in Statistical Forecasting
  • 2206 Accesses

Abstract

This chapter is devoted to forecasting in the non-classical setting where the state space of the time series is finite, necessitating the use of discrete-valued time series models. The field of discrete statistics has remained relatively underdeveloped until the recent years, when rapid introduction of digital equipment stimulated the researchers to develop numerous discrete models and techniques. In this chapter, we discuss optimal forecasting statistics and forecast risks for Markov chain models, including high-order Markov chains, and the beta-binomial model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, T.: An Introduction to Multivariate Statistical Analysis. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  2. Basawa, I., Rao, B.: Statistical Inference for Stochastic Processes. Academic, New York (1980)

    MATH  Google Scholar 

  3. Billingsley, P.: Statistical methods in Markov chains. Ann. Math. Stat. 32, 12–40 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borovkov, A.: Mathematical Statistics. Gordon & Breach, Amsterdam (1998)

    MATH  Google Scholar 

  5. Brillinger, D.: An analysis of an ordinal-valued time series. In: Robinson, P., Rosenblatt, M. (eds.) Papers in Time Series Analysis: A Memorial Volume to Edward J. Hannan. Athens Conference, vol. 2. Lecture Notes in Statistics, vol. 115, pp. 73–87. Springer, New York (1996)

    Google Scholar 

  6. Collet, D.: Modeling Binary Data. Chapman & Hall, London (2002)

    Google Scholar 

  7. Demidovich, B., Maron, I.: Computational Mathematics. Mir Publishers, Moscow (1973)

    MATH  Google Scholar 

  8. Doob, J.: Stochastic Processes. Wiley, New York (1953)

    MATH  Google Scholar 

  9. Fokianos, K., Fried, R.: Interventions in ingarch models. J. Time Ser. Anal. 31, 210–225 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fokianos, K., Kedem, B.: Prediction and classification of nonstationary categorical time series. J. Multivar. Anal. 67, 277–296 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fokianos, K., Kedem, B.: Regression theory for categorical time series. Stat. Sci. 18, 357–376 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hyndman, R.: Time series data library. http://www.robhyndman.info/TSDL (2008)

  13. Jacobs, P., Lewis, A.: Discrete time series generated by mixtures. J. R. Stat. Soc. B 40(1), 94–105 (1978)

    MathSciNet  MATH  Google Scholar 

  14. Johnson, N., Kotz, S., Kemp, A.: Univariate Discrete Distributions. Wiley, New York (1996)

    Google Scholar 

  15. Ju, W., Vardi, Y.: A hybrid high-order Markov chain model for computer intrusion detection. J. Comput. Graph. Stat. 10, 277–295 (2001)

    Article  MathSciNet  Google Scholar 

  16. Kazakos, D.: The Bhattacharyya distance and detection between Markov chains. IEEE Trans. Inf. Theory IT-24, 727–745 (1978)

    Google Scholar 

  17. Kedem, B.: Time Series Analysis by Higher Order Crossings. IEEE Press, New York (1994)

    MATH  Google Scholar 

  18. Kedem, B., Fokianos, K.: Regression Models for Time Series Analysis. Wiley, Hoboken (2002)

    Book  MATH  Google Scholar 

  19. Kemeny, J., Snell, J.: Finite Markov Chains. Springer, New York (1976)

    MATH  Google Scholar 

  20. Kharin, A.: Minimax robustness of Bayesian forecasting under functional distortions of probability densities. Austrian J. Stat. 31, 177–188 (2002)

    Google Scholar 

  21. Kharin, Yu.: Markov chains with r-partial connections and their statistical estimation (in Russian). Trans. Natl. Acad. Sci. Belarus 48(1), 40–44 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Kharin, Yu., Kostevich, A.: Discriminant analysis of stationary finite Markov chains. Math. Methods Stat. 13(1), 235–252 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Kharin, Yu., Pashkevich, M.: Robust estimation and forecasting for beta-mixed hierarchical models of grouped binary data. Stat. Oper. Res. Trans. 28(2), 125–160 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Kharin, Yu., Piatlitski, A.: A Markov chain of order s with r partial connections and statistical inference on its parameters. Discrete Math. Appl. 17(3), 295–317 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kharin, Yu., Piatlitski, A.: Statistical analysis of discrete time series based on the MC(s, r)-model. Austrian J. Stat. 40(1, 2), 75–84 (2011)

    Google Scholar 

  26. Koopmans, L.: Asymptotic rate of discrimination for Markov processes. Ann. Math. Stat. 31, 982–994 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  27. LeCam, L., Yang, G.: Asymptotics in Statistics. Springer, New York (1990)

    Google Scholar 

  28. MacDonald, I., Zucchini, W.: Hidden Markov and other Models for Discrete-valued Time Series. Chapman & Hall, London (1997)

    MATH  Google Scholar 

  29. Makridakis, S., Hyndman, R., Wheelwright, S.: Forecasting: Methods and Applications. Wiley, New York (1998)

    Google Scholar 

  30. Malytov, M., Tsitovich, I.: Second order optimal sequential discrimination between Markov chains. Math. Methods Stat. 10, 446–464 (2001)

    Google Scholar 

  31. Pearson, E.: Bayes theorem in the light of experimental sampling. Biometrika 17, 338–442 (1925)

    Google Scholar 

  32. Petrov, V.: Sums of Independent Variables. Springer, New York (1972)

    Google Scholar 

  33. Raftery, A.: A model for high-order Markov chains. J. R. Stat. Soc. Ser. B 47(3), 528–539 (1985)

    MathSciNet  MATH  Google Scholar 

  34. Skellam, J.: A probability distribution derived from the binomial distribution by regarding the probability of success as a variable between the sets of trials. J. R. Stat. Soc. Ser. B 10, 257–261 (1948)

    MathSciNet  MATH  Google Scholar 

  35. Tripathi, R., Gupta, R., Gurland, J.: Estimation of parameters in the beta binomial model. Ann. Inst. Stat. Math. 46, 317–331 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Waterman, M.: Mathematical Methods for DNA Sequences. CRC Press, Boca Raton (1989)

    MATH  Google Scholar 

  37. Yaffee, R., McGee, M.: Introduction to Time Series Analysis and Forecasting. Academic, New York (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kharin, Y. (2013). Forecasting of Discrete Time Series. In: Robustness in Statistical Forecasting. Springer, Cham. https://doi.org/10.1007/978-3-319-00840-0_10

Download citation

Publish with us

Policies and ethics