Skip to main content

The Kähler–Ricci Flow on Fano Manifolds

  • Chapter
  • First Online:
An Introduction to the Kähler-Ricci Flow

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2086))

Abstract

In these lecture notes, we aim at giving an introduction to the Kähler–Ricci flow (KRF) on Fano manifolds. It covers mostly the developments of the KRF in its first 20 years (1984–2003), especially an essentially self-contained exposition of Perelman’s uniform estimates on the scalar curvature, the diameter, and the Ricci potential function for the normalized Kähler–Ricci flow (NKRF), including the monotonicity of Perelman’s μ-entropy and κ-noncollapsing theorems for the Ricci flow on compact manifolds. The lecture notes is based on a mini-course on KRF delivered at University of Toulouse III in February 2010, a talk on Perelman’s uniform estimates for NKRF at Columbia University’s Geometry and Analysis Seminar in Fall 2005, and several conference talks, including “Einstein Manifolds and Beyond” at CIRM (Marseille—Luminy, fall 2007), “Program on Extremal Kähler Metrics and Kähler–Ricci Flow” at the De Giorgi Center (Pisa, spring 2008), and “Analytic Aspects of Algebraic and Complex Geometry” at CIRM (Marseille— Luminy, spring 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    My work was carried out at Columbia University in early 1990s.

  2. 2.

    Perelman also used a similar argument in proving his uniform diameter estimate for the NKRF, see the proof of Claim 6.1 in Sect. 5.6.

  3. 3.

    Perelman’s private lecture was attended by a very small audience, including this author and the authors of [SeT08].

  4. 4.

    Theorems 5.7.5 and 5.7.6 were observed by Hamilton and the author during the IPAM conference “Workshop on Geometric Flows: Theory and Computation” in February, 2004.

References

  1. T. Aubin, Equation de type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. 102, 63–95 (1978)

    MathSciNet  MATH  Google Scholar 

  2. C. Baker, The mean curvature flow of submanifolds of high codimension. Ph.D. thesis, Australian National University, 2010 [arXiv:1104.4409v1]

    Google Scholar 

  3. S. Bando, On the classification of three-dimensional compact Kaehler manifolds of nonnegative bisectional curvature. J. Differ. Geom. 19(2), 283–297 (1984)

    MathSciNet  MATH  Google Scholar 

  4. S. Bando, A. Kasue, H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math. 97, 313–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Bando, T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, in Algebraic Geometry (Sendai, 1985), ed. by T. Oda. Advanced Studies in Pure Mathematics, vol. 10 (Kinokuniya, 1987), pp. 11–40 (North-Holland, Amsterdam, 1987)

    Google Scholar 

  6. S. Brendle, R. Schoen, Manifolds with 1 ∕ 4-pinched curvature are space forms. J. Am. Math. Soc. 22(1), 287–307 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Calabi, Extremal Kähler metrics, in Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102 (Princeton University Press, Princeton, 1982), pp. 259–290

    Google Scholar 

  8. H.D. Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. H.D. Cao, On Harnack’s inequalities for the Kähler–Ricci flow. Invent. Math. 109(2), 247–263 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. H.-D. Cao, Existence of gradient Kähler–Ricci solitons, in Elliptic and Parabolic Mathords in Geometry (Minneapolis, MN, 1994) (A.K. Peters, Wellesley, 1996), pp. 1–16

    Google Scholar 

  11. H.-D. Cao, Limits of Solutions to the Kähler–Ricci flow. J. Differ. Geom. 45, 257–272 (1997)

    MATH  Google Scholar 

  12. H.-D. Cao, Recent progress on Ricci solitons, in Recent Advances in Geometric Analysis. Advanced Lectures in Mathematics (ALM), vol. 11 (International Press, Somerville, 2010), pp. 1–38

    Google Scholar 

  13. H.-D. Cao, B.-L. Chen, X.-P. Zhu, Ricci flow on compact Kähler manifolds of positive bisectional curvature. C. R. Math. Acad. Sci. Paris 337(12), 781–784 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. H.-D. Cao, B. Chow, Compact Kähler manifolds with nonnegative curvature operator. Invent. Math. 83(3), 553–556 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. H.-D. Cao, M. Zhu, A note on compact Kähler–Ricci flow with positive bisectional curvature. Math. Res. Lett. 16(6), 935–939 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. H.-D. Cao, X.-P. Zhu, A complete proof of the Poincaré and geometrization conjectures- application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math. 10(2), 165–492 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Chau, L.-F. Tam, On the complex structure of Kähler manifolds with nonnegative curvature. J. Differ. Geom. 73(3), 491–530 (2006)

    MathSciNet  MATH  Google Scholar 

  18. A. Chau, L.-F. Tam, A survey on the Kähler–Ricci flow and Yau’s uniformization conjecture, in Surveys in Differential Geometry, vol. XII. Geometric Flows. [Surv. Differ. Geom. vol. 12] (International Press, Somerville, 2008), pp. 21–46

    Google Scholar 

  19. B.-L. Chen, S.-H. Tang, X.-P. Zhu, A uniformization theorem for non complete non-compact Kähler surfaces with positive bisectional curvature. J. Differ. Geom. 67(3), 519–570 (2004)

    MathSciNet  MATH  Google Scholar 

  20. X.X. Chen, G. Tian, Ricci flow on Kähler-Einstein surfaces. Invent. Math. 147(3), 487–544 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. X.X. Chen, G. Tian, Ricci flow on Kähler-Einstein manifolds. Duke Math. J. 131(1), 17–73 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Chow, The Ricci flow on the 2-sphere. J. Differ. Geom. 33(2), 325–334 (1991)

    MATH  Google Scholar 

  23. A.S. Dancer, M.Y. Wang, On Ricci solitons of cohomogeneity one. Ann. Glob. Anal. Geom. 39(3), 259–292 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. D.M. DeTurck, Deforming metrics in the direction of their Ricci tensors. J. Differ. Geom. 18(1), 157–162 (1983)

    MathSciNet  MATH  Google Scholar 

  25. W.-Y. Ding, G. Tian, Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110(2), 315–335 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. S.K. Donaldson, Scalar curvature and stability of toric varieties. J. Differ. Geom. 62, 289–349 (2002)

    MathSciNet  MATH  Google Scholar 

  27. M. Feldman, T. Ilmanen, D. Knopf, Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons. J. Differ. Geom. 65(2), 169–209 (2003)

    MathSciNet  MATH  Google Scholar 

  28. A. Futaki, An obstruction to the existence of Einstein Kähler metrics. Invent. Math. 73, 437–443 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Futaki, M.-T. Wang, Constructing Kähler–Ricci solitons from Sasaki-Einstein manifolds. Asian J. Math. 15(1), 33–52 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. H.-L. Gu, A new proof of Mok’s generalized Frankel conjecture theorem. Proc. Am. Math. Soc. 137(3), 1063–1068 (2009)

    Article  MATH  Google Scholar 

  31. R.S. Hamilton, Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  32. R.S. Hamilton, Four-manifolds with positive curvature operator. J. Differ. Geom. 24(2), 153–179 (1986)

    MathSciNet  MATH  Google Scholar 

  33. R. Hamilton, The Ricci flow on surfaces, in Mathematics and General Relativity (Santa Cruz, CA, 1986). Contemporary Mathematics, vol. 71 (American Mathematical Society, Providence, 1988), pp. 237–262

    Google Scholar 

  34. R. Hamilton, The Harnack estimate for the Ricci flow. J. Differ. Geom. 37, 225–243 (1993)

    MathSciNet  MATH  Google Scholar 

  35. R. Hamilton, Eternal solutions to the Ricci flow. J. Differ. Geom. 38(1), 1–11 (1993)

    MathSciNet  MATH  Google Scholar 

  36. R.S. Hamilton, The formation of singularities in the Ricci flow, in Surveys in Differential Geometry, vol. II (Cambridge, MA, 1993) (International Press, Cambridge, 1995), pp. 7–136

    Google Scholar 

  37. R. Hamilton, A compactness property for solution of the Ricci flow. Am. J. Math. 117, 545–572 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. R.S. Hamilton, Four-manifolds with positive isotropic curvature. Comm. Anal. Geom. 5(1), 1–92 (1997)

    MathSciNet  MATH  Google Scholar 

  39. R.S. Hamilton, Non-singular solutions to the Ricci flow on three manifolds. Comm. Anal. Geom. 7, 695–729 (1999)

    MathSciNet  MATH  Google Scholar 

  40. N. Koiso, On rotationally symmetric Hamilton’s equation for Kaḧler-Einstein metrics, in Advanced Studies in Pure Mathematics, vol. 18-I. Recent Topics in Differential and Analytic Geometry, pp. 327–337 (Academic, Boston, 1990)

    Google Scholar 

  41. B.P. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29, 665–683 (1989)

    MathSciNet  MATH  Google Scholar 

  42. P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  43. T. Mabuchi, K-energy maps integrating Futaki invariants. Tohoku Math. J. (2) 38(4), 575–593 (1986)

    Google Scholar 

  44. N. Mok, The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature. J. Differ. Geom. 27(2), 179–214 (1988)

    MathSciNet  MATH  Google Scholar 

  45. S. Mori, Projective manifolds with ample tangent bundles. Ann. Math. 100, 593–606 (1979)

    Article  Google Scholar 

  46. O. Munteanu, G. Székelyhidi, On convergence of the Kähler–Ricci flow. Commun. Anal. Geom. 19(5), 887–903 (2011)

    Article  MATH  Google Scholar 

  47. H. Nguyen, Invariant curvature cones and the Ricci flow. Ph.D. thesis, Australian National University, 2007

    Google Scholar 

  48. L. Ni, Ancient solutions to Kähler–Ricci flow. Math. Res. Lett. 12(5–6), 633–653 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. N. Pali, Characterization of Einstein-Fano manifolds via the Kähler–Ricci flow. Indiana Univ. Math. J. 57(7), 3241–3274 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. G. Perelman, The entropy formula for the Ricci flow and its geometric applications (2002). Preprint [arXiv: math.DG/0211159]

    Google Scholar 

  51. G. Perelman, Ricci flow with surgery on three-manifolds (2003). Preprint [arXiv:math.DG/0303109]

    Google Scholar 

  52. G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds (2003). Preprint [arXiv:math.DG/0307245]

    Google Scholar 

  53. D.H. Phong, J. Song, J. Sturm, B. Weinkove, The Kähler–Ricci flow with positive bisectional curvature. Invent. Math. 173(3), 651–665 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. D.H. Phong, J. Song, J. Sturm, B. Weinkove, The Kähler–Ricci flow and the \(\bar{\partial }\) operator on vector fields. J. Differ. Geom. 81(3), 631–647 (2009)

    MathSciNet  MATH  Google Scholar 

  55. D.H. Phong, J. Song, J. Sturm, B. Weinkove, On the convergence of the modified Kähler–Ricci flow and solitons. Comment. Math. Helv. 86(1), 91–112 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. D.H. Phong, J. Sturm, On stability and the convergence of the Kähler–Ricci flow. J. Differ. Geom. 72(1), 149–168 (2006)

    MathSciNet  MATH  Google Scholar 

  57. O.S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schr\(\ddot{o}\)dinger opreators. J. Funct. Anal. 42(1), 110–120 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  58. W-D. Ruan, Y. Zhang, Z. Zhang, Bounding sectional curvature along the Kähler–Ricci flow. Comm. Contemp. Math. 11(6), 1067–1077 (2009)

    Google Scholar 

  59. R. Schoen, S.T. Yau, Lectures on differential geometry, in Conference Proceedings and Lecture Notes in Geometry and Topology, vol. 1 (International Press Publications, Somerville, 1994)

    Google Scholar 

  60. N. Šešum, Curvature tensor under the Ricci flow. Am. J. Math. 127(6), 1315–1324 (2005)

    Article  MATH  Google Scholar 

  61. N. Sesum, G. Tian, Bounding scalar curvature and diameter along the Kähler–Ricci flow (after Perelman). J. Inst. Math. Jussieu 7(3), 575–587 (2008)

    MathSciNet  MATH  Google Scholar 

  62. W.X. Shi, Complete noncompact Kähler manifolds with positive holomorphic bisectional curvature. Bull. Am. Math. Soc. 23, 437–440 (1990)

    Article  MATH  Google Scholar 

  63. W.X. Shi, Ricci flow and the uniformization on complete noncompact Kḧler manifolds. J. Differ. Geom. 45(1), 94–220 (1997)

    MATH  Google Scholar 

  64. J. Song, B. Weinkove, Lecture Notes on the Kähler–Ricci Flow, in An Introduction to the Kähler–Ricci Flow, ed. by S. Boucksom, P. Eyssidieux, V. Guedj. Lecture Notes in Mathematics (Springer, Heidelberg, 2013)

    Google Scholar 

  65. G. Székelyhidi, The Kähler–Ricci flow and K-stability. Am. J. Math. 132(4), 1077–1090 (2010)

    Article  MATH  Google Scholar 

  66. G. Tian, Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130, 239–265 (1997)

    Google Scholar 

  67. G. Tian, Z. Zhang, On the Kähler–Ricci flow on projective manifolds of general type. Chin. Ann. Math. Ser. B 27(2), 179–192 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  68. G. Tian, X. Zhu, Uniqueness of Kähler–Ricci solitons. Acta Math. 184(2), 271–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  69. G. Tian, X. Zhu, A new holomorphic invariant and uniqueness of Kähler–Ricci solitons. Comment. Math. Helv. 77(2), 297–325 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  70. V. Tosatti, Kähler–Ricci flow on stable Fano manifolds. J. Reine Angew. Math. 640, 67–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  71. H. Tsuji, Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type. Math. Ann. 281(1), 123–133 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  72. X.J. Wang, X. Zhu, Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188(1), 87–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  73. B. Wilking, A Lie algebraic approach to Ricci flow invariant curvature conditions and Harnack inequalities (2010). Preprint [arXiv:1011.3561v2]

    Google Scholar 

  74. S.-T. Yau, Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28, 201–228 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  75. S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

  76. S.-T. Yau, Open problems in geometry. Proc. Symp. Pure Math. 54, 1–28 (1993)

    Article  Google Scholar 

  77. Z.L. Zhang, Kähler Ricci flow on Fano manifolds with vanished Futaki invariants. Math. Res. Lett. 18, 969–982 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This article is based on a mini-course on KRF delivered at University of Toulouse III in February 2010, a talk on Perelman’s uniform estimates for NKRF at Columbia University’s Geometry and Analysis Seminar in Fall 2005, and several conference talks, including “Einstein Manifolds and Beyond” at CIRM (Marseille—Luminy, fall 2007), “Program on Extremal Kähler Metrics and Kähler–Ricci Flow” at the De Giorgi Center (Pisa, spring 2008), and “Analytic Aspects of Algebraic and Complex Geometry” at CIRM (Marseille—Luminy, spring 2011). This article also served as the lecture notes by the author for a graduate course at Lehigh University in spring 2012, as well as a short course at the Mathematical Sciences Center of Tsinghua University in May, 2012. I would like to thank Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi for inviting me to give the mini-course in Toulouse, and especially Vincent Guedj for inviting me to write up the notes for a special volume. I also wish to thank the participants in my courses, especially Qiang Chen, Xin Cui, Chenxu He, Xiaofeng Sun, Yingying Zhang and Meng Zhu, for their helpful suggestions. Finally, I would like to take this opportunity to express my deep gratitude to Professors E. Calabi, R. Hamilton, and S.-T. Yau for teaching me the Kähler geometry, the Ricci flow, and geometric analysis over the years. Partially supported by NSF grant DMS-0909581.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai-Dong Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cao, HD. (2013). The Kähler–Ricci Flow on Fano Manifolds. In: Boucksom, S., Eyssidieux, P., Guedj, V. (eds) An Introduction to the Kähler-Ricci Flow. Lecture Notes in Mathematics, vol 2086. Springer, Cham. https://doi.org/10.1007/978-3-319-00819-6_5

Download citation

Publish with us

Policies and ethics