Skip to main content

Regularizing Properties of the Kähler–Ricci Flow

  • Chapter
  • First Online:
An Introduction to the Kähler-Ricci Flow

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2086))

Abstract

These notes present a general existence result for degenerate parabolic complex Monge–Ampère equations with continuous initial data, slightly generalizing the work of Song and Tian on this topic. This result is applied to construct a Kähler–Ricci flow on varieties with log terminal singularities, in connection with the Minimal Model Program. The same circle of ideas is also used to prove a regularity result for elliptic complex Monge–Ampère equations, following Székelyhidi–Tosatti.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The authors state their result assuming that ψ 0 is merely bounded, but they use in an essential way the continuity of ψ 0 , which is nevertheless known in this context by Kołodziej [Kol98].

  2. 2.

    This of course assumes that c 1(X) has a definite sign.

  3. 3.

    In the Kähler–Einstein Fano case, a celebrated result of Bando and Mabuchi [BM87] asserts that any two solutions are connected by the flow of a holomorphic vector field.

References

  1. T. Aubin, Equation de type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. 102, 63–95 (1978)

    MathSciNet  MATH  Google Scholar 

  2. S. Bando, T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, in Algebraic Geometry (Sendai, 1985), ed. by T. Oda. Advanced Studies in Pure Mathematics, vol. 10 (Kinokuniya, 1987), pp. 11–40 (North-Holland, Amsterdam, 1987)

    Google Scholar 

  3. R. Berman, S. Boucksom, V. Guedj, A. Zeriahi, A variational approach to complex Monge-Ampère equations. Publ. Math. I.H.E.S. 117, 179–245 (2013)

    Google Scholar 

  4. Z. Błocki, Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds. Indiana Univ. Math. J. 52(6), 1697–1701 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Z. Błocki, A gradient estimate in the Calabi-Yau theorem. Math. Ann. 344, 317–327 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Boucksom, Divisorial Zariski decompositions on compact complex manifolds. Ann. Sci. Ecole Norm. Sup. (4) 37(1), 45–76 (2004)

    Google Scholar 

  7. S. Boucksom, P. Eyssidieux, V. Guedj, A. Zeriahi, Monge-Ampère equations in big cohomology classes. Acta Math. 205, 199–262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. H.D. Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. J.P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines. Mém. Soc. Math. Fr. 19, 124 p. (1985)

    Google Scholar 

  10. J.P. Demailly, Regularization of closed positive currents and intersection theory. J. Algebr. Geom. 1(3), 361–409 (1992)

    MathSciNet  MATH  Google Scholar 

  11. J.P. Demailly, Complex analytic and differential geometry (2009), OpenContent book available at http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf

  12. J.-P. Demailly, M. Paun, Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math. (2) 159(3), 1247–1274 (2004)

    Google Scholar 

  13. S. Dinew, Z. Zhang, On stability and continuity of bounded solutions of degenerate complex Monge-Ampère equations over compact Kähler manifolds. Adv. Math. 225(1), 367–388 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Eyssidieux, V. Guedj, A. Zeriahi, Singular Kähler-Einstein metrics. J. Am. Math. Soc. 22, 607–639 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Eyssidieux, V. Guedj, A. Zeriahi, Viscosity solutions to degenerate complex Monge-Ampère equations. Comm. Pure Appl. Math. 64, 1059–1094 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Fujiki, G. Schumacher, The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics. Publ. Res. Inst. Math. Sci. 26(1), 101–183 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Gill, Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds. Comm. Anal. Geom. 19(2), 277–303 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Grauert, R. Remmert, Plurisubharmonische Funktionen in komplexen Räumen. Math. Z. 65, 175–194 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Guedj, A. Zeriahi, Stability of solutions to complex Monge-Ampère equations in big cohomology classes. Math. Res. Lett. 19(5), 1025–1042 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Kollár, S. Mori, in Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  21. S. Kołodziej, The complex Monge-Ampère equation. Acta Math. 180(1), 69–117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Kołodziej, The Monge-Ampère equation on compact Kähler manifolds. Indiana Univ. Math. J. 52(3), 667–686 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. G.M. Lieberman, Second Order Parabolic Differential Equations (World Scientific, River Edge, 1996)

    Book  MATH  Google Scholar 

  24. Y.T. Siu, in Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics. DMV Seminar, vol. 8 (Birkhäuser, Basel, 1987)

    Google Scholar 

  25. J. Song, G. Tian, The Kähler–Ricci flow through singularities (2009). Preprint [arXiv:0909.4898]

    Google Scholar 

  26. G. Székelyhidi, V. Tosatti, Regularity of weak solutions of a complex Monge-Ampère equation. Anal. PDE 4, 369–378 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Tian, Z. Zhang, On the Kähler–Ricci flow on projective manifolds of general type. Chin. Ann. Math. Ser. B 27(2), 179–192 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Tsuji, Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type. Math. Ann. 281(1), 123–133 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

  30. A. Zeriahi, Volume and capacity of sublevel sets of a Lelong class of psh functions. Indiana Univ. Math. J. 50(1), 671–703 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Boucksom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boucksom, S., Guedj, V. (2013). Regularizing Properties of the Kähler–Ricci Flow. In: Boucksom, S., Eyssidieux, P., Guedj, V. (eds) An Introduction to the Kähler-Ricci Flow. Lecture Notes in Mathematics, vol 2086. Springer, Cham. https://doi.org/10.1007/978-3-319-00819-6_4

Download citation

Publish with us

Policies and ethics