Skip to main content

Automatic Extraction of Complex Objects from Land Cover Maps

  • Chapter
  • First Online:
Geographic Information Science at the Heart of Europe

Abstract

The ESA Support to Topology (STO) project addressed the problem of extracting so-called complex objects, intended as particular land use elements (urban fabric, industrial units…) from land cover maps, by means of topological relations among the different land cover objects. We developed an approach to give a semantic characterization to complex objects. Based on that, we developed a functional strategy to identify complex objects in an image and to build a visual representation compatible with the scale and resolution of the original map. The spatial operators, not only topological but directional and metric as well, were either taken from already existing systems or specifically implemented for the study. The developed approach and prototype web-GIS system, named Topology Software System (TSS), have been validated through several use cases, run by specialized end-users, in order to verify that the expected operations could be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baltsavias EP (2004) Object extraction and revision by image analysis using existing geodata and knowledge: current status and steps towards operational systems. ISPRS J Photogrammetry Remote Sens 58:129–151

    Article  Google Scholar 

  • Barnsley MJ, Møller-Jensen L, Barr SL (2001) Inferring urban land use by spatial and structural pattern recognition. In: Donnay J-P, Barnsley MJ, A.Longley P (eds) Remote sensing and urban analysis. Taylor and Francis, pp 102–130

    Google Scholar 

  • Billen R, Clementini E (2004) Étude des caractéristiques projectives des objets spatiaux et de leurs relations. Revue Internationale de Géomatique 14(2):145–165

    Article  Google Scholar 

  • Bucher B, Falquet G, Clementini E, Sester M (2012) Towards a typology of spatial relations and properties for urban applications. Paper presented at the 3u3d2012: usage, usability, and utility of 3D city models. European cost action TU801 final conference, Nantes (France), pp 29–31

    Google Scholar 

  • Clementini E (2010) Ontological impedance in 3d semantic data modeling. In: Kolbe TH, König G, Nagel C (eds) 5th 3D geoinfo conference, vol international archives of the photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII-4, part W15. ISPRS, 3–4 November 2010, Berlin, pp 97–100

    Google Scholar 

  • Clementini E (2012) Directional relations and frames of reference. GeoInformatica. doi:10.1007/s10707-011-0147-2.10.1007/s10707-011-0147-2

    Google Scholar 

  • Clementini E, Di Felice P (2000) Spatial operators. ACM SIGMOD Rec 29(3):31–38

    Article  Google Scholar 

  • Clementini E, Di Felice P, Hernández D (1997) Qualitative representation of positional information. Artif Intell 95(2):317–356

    Article  Google Scholar 

  • Clementini E, Di Felice P, van Oosterom P (1993) a small set of formal topological relationships suitable for end-user interaction. In: Abel D, Ooi BC (eds) Advances in spatial databases—third international symposium, SSD ‘93, vol 692., LNCSSpringer, Berlin, pp 277–295

    Chapter  Google Scholar 

  • Clementini E, Laurini R (2008) Un cadre conceptuel pour modéliser les relations spatiales. Revue des Nouvelles Technol de l’Inf (RNTI) RNTI-E 14:1–17

    Google Scholar 

  • Cohn AG, Bennett B, Gooday J, Gotts N (1997) RCC: a calculus for region based qualitative spatial reasoning. GeoInformatica 1(1):275–316

    Article  Google Scholar 

  • Debeir O, Van den Steen I, Latinne P, Van Ham P, Wolff E (2002) Textural and contextual land-cover classification using single and multiple classifier systems. Photogrammetric Eng Remote Sens 68(6):597–605

    Google Scholar 

  • Di Gregorio A, Jansen LJM (2000) Land cover classification system (LCCS): classification concepts and user manual

    Google Scholar 

  • Egenhofer MJ, Franzosa RD (1991) Point-set topological spatial relations. Int J Geograph Inf Syst 5(2):161–174

    Article  Google Scholar 

  • Egenhofer MJ, Herring JR (1991) Categorizing binary topological relationships between regions, lines, and points in geographic databases. Department of Surveying Engineering, University of Maine, Orono

    Google Scholar 

  • Egenhofer MJ, Mark DM (1995) Naive geography. In: Frank AU, Kuhn W (eds) Spatial information theory: a theoretical basis for GIS—international conference, COSIT’95, vol 988., LNCSSpringer, Berlin, pp 1–15

    Chapter  Google Scholar 

  • Exelis (2013) ENVI feature extraction module. www.exelisvis.com/

  • Frank AU (1992) qualitative reasoning about distances and directions in geographic space. J Vis Lang Comput 3(4):343–371

    Article  Google Scholar 

  • Friedl MA, Brodley CE (1997) Decision tree classification of land cover from remotely sensed data. Remote Sens Environ 61(3):399–409

    Article  Google Scholar 

  • GMES Urban atlas (2012) www.eea.europa.eu/data-and-maps/data/urban-atlas

  • Goyal R, Egenhofer MJ (1997) The direction-relation matrix: a representation of direction relations for extended spatial objects. In: UCGIS Annual Assembly and Summer Retreat, Bar Harbor

    Google Scholar 

  • Grillmayer R, Banko G, Scholz J, Perger C, Steinnocher K, Walli A, Weichselbaum J (2010) Land information system Austria (LISA)—Objektorientiertes Datenmodell zur Abbildung der Landbeckung und Landnutzung. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte Geoinformatik 2010—Beiträge zum 22. AGIT-Symposium, Wichmann, pp 616–621

    Google Scholar 

  • Hernández D (1993) Maintaining qualitative spatial knowledge. In: Frank AU, Campari I (eds) Spatial information theory: a theoretical basis for GIS—european conference, COSIT’93, vol 716., LNCSSpringer, Berlin, pp 36–53

    Chapter  Google Scholar 

  • Hussain M, Davies C, Barr R (2007) Classifying buildings automatically: a methodology. In: Paper presented at the GISRUK 2007: proceedings of the geographical information science research UK 15th Annual conference, Maynooth, 11th–13th April 2007

    Google Scholar 

  • Ippoliti E, Clementini E, Natali S Automatic generation of land use maps from land cover maps. In: Proceedings of the AGILE’2012 international conference on geographic information science, Avignon, 24–27 April 2012

    Google Scholar 

  • Ippoliti E, Clementini E, Natali S, Banko G (2012) A methodology for the automatic generation of land use maps. In: GI_Forum 2012: geovisualization, society and learning, Salzburg, Austria, 3–6 July, Wichmann Verlag, Berlin, pp 456–465

    Google Scholar 

  • ISO (2010) ISO/TC 211 Geographic information/Geomatics. http://www.isotc211.org/. http://www.isotc211.org/

  • Klien E, Lutz M (2005) The role of spatial relations in automating the semantic annotation of geodata. In: Cohn AG, Mark DM (eds) COSIT 2005, vol LNCS 3693, pp 133–148. Spinger, Berlin

    Google Scholar 

  • Land Information System Austria (2012) www.landinformationsystem.at/

  • Liu Y, Guo Q, Kelly M (2008) A framework of region-based spatial relations for non-overlapping features and its application in object based image analysis. ISPRS J Photogrammetry Remote Sens 63:461–475

    Article  Google Scholar 

  • Malinverni ES, Tassetti AN, Bernardini A (2010) Automatic land use/land cover classification system with rules based both on objects attributes and landscape indicators. In: Paper presented at the Geographic Object-Based Image Analysis GEOBIA 2010, Ghent, 29 June–2 July 2010

    Google Scholar 

  • Natali S, Clementini E, Ippoliti E, Banko G, Brodsky L (2012) Topology software system: support to the creation of land use maps. In: Paper presented at the ESA-EUSC-JRC 2012. Image Information Mining Conference: Knowledge Discovery from Earth Observation Data, German Aerospace Center (DLR), Oberpfaffenhofen, Germany, 24–26 October

    Google Scholar 

  • Novack T, Kux HJH, Feitosa RQ, Costa GA (2010) Per block urban land use interpretation using optical VHR data and the knowledge-based system Interimage. Paper presented at the Geographic Object-Based Image Analysis GEOBIA 2010, Ghent, 29 June–2 July

    Google Scholar 

  • OGC (2011) Geometry object model. OpenGIS implementation specification for geographic information—simple feature access—part 1: common architecture

    Google Scholar 

  • OGC Open Geospatial Consortium Inc. (1999) OpenGIS simple features implementation specification for SQL. OGC 99–049

    Google Scholar 

  • Overwatch (2013) Feature analyst. http://www.overwatch.com/

  • Prüller R, Grillmayer R, Banko G, Mansberger R, Steinnocher K, Stemberger W, Walli A, Weichselbaum J (2011) Nutzen von innovativen Technologien für eine flächendeckende, flexible Landbeobachtung Österreichs. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte Geoinformatik 2011—Beiträge zum 23. AGIT-Symposium, Wichmann, pp 239–244

    Google Scholar 

  • Tarquini F, Clementini E (2008) Spatial relations between classes as integrity constraints. Trans GIS 12(s1):45–57

    Google Scholar 

  • Thunig H, Wolf N, Naumann S, Siegmund A, J¨urgens C (2010) Automated LULC classification of VHR optical satellite data in the context of urban planning. In: Paper presented at the geographic object-based image analysis GEOBIA 2010, Ghent, 29 June–2 July

    Google Scholar 

  • Trimble (2013) eCognition. www.ecognition.com/

  • Weichselbaum J, Banko G, Hoffmann C, Riedl M, Schardt M, Steinnocher K, Wagner W, Walli A (2009) Land information system Austria (LISA): Bedarfsgerechte Landnutzungsinformationen für die öffentliche Verwaltung. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte Geoinformatik 2009: Beiträge zum 21. AGIT-Symposium, Wichmann, pp 492–497

    Google Scholar 

  • Wijnant J, Steenberghen T (2004) Per-parcel classification of ikonos imagery. In: Paper presented at the 7th AGILE conference on geographic information science, Heraklion

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the European Space Agency (ESA) for granting the Support To Topology (STO) project (http://wiki.services.eoportal.org/tiki-index.php?page=STO+Project), the SISTEMA GmbH, Vienna, Austria, for developing the prototype of the Topology Software System (TSS), the Environmental Protection Agency of Austria (UBA), Department for Biodiversity and Nature Conservation, Vienna, for providing LISA images and test cases, the GISAT, Prague, Czech Republic, for providing Urban Atlas images and test cases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseo Clementini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Clementini, E., Ippoliti, E. (2013). Automatic Extraction of Complex Objects from Land Cover Maps. In: Vandenbroucke, D., Bucher, B., Crompvoets, J. (eds) Geographic Information Science at the Heart of Europe. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-00615-4_5

Download citation

Publish with us

Policies and ethics