Skip to main content

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1363 Accesses

Abstract

In this chapter we recall in a pragmatic manner all the necessary notions and results from the thermodynamic formalism and dimension theory. In particular, we introduce the notions of topological pressure, BS-dimension, Hausdorff dimension, lower and upper box dimensions and pointwise dimension. We emphasize that we consider the general case of the topological pressure for noncompact sets, which is crucial in multifractal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR 128 (1959), 873–875.

    MathSciNet  MATH  Google Scholar 

  2. L. Barreira, Dimension and Recurrence in Hyperbolic Dynamics, Progress in Mathematics 272, Birkhäuser, Basel, 2008.

    MATH  Google Scholar 

  3. L. Barreira and B. Saussol, Multifractal analysis of hyperbolic flows, Commun. Math. Phys. 214 (2000), 339–371.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Barreira and J. Schmeling, Sets of “non-typical” points have full topological entropy and full Hausdorff dimension, Isr. J. Math. 116 (2000), 29–70.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Bowen and D. Ruelle, The ergodic theory of axiom A flows, Invent. Math. 29 (1975), 181–202.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, New York, 2003.

    Book  MATH  Google Scholar 

  7. G. Keller, Equilibrium States in Ergodic Theory, London Mathematical Society Student Texts 42, Cambridge University Press, Cambridge, 1998.

    Book  MATH  Google Scholar 

  8. W. Parry and M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, Astérisque 187–188, 1990.

    MATH  Google Scholar 

  9. Ya. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures in Mathematics, Chicago University Press, Chicago, 1997.

    Book  Google Scholar 

  10. D. Ruelle, Thermodynamic Formalism, Encyclopedia of Mathematics and Its Applications 5, Addison-Wesley, Reading, 1978.

    MATH  Google Scholar 

  11. P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79, Springer, Berlin, 1982.

    Book  MATH  Google Scholar 

  12. L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Theory Dyn. Syst. 2 (1982), 109–124.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barreira, L. (2013). Pressure and Dimension. In: Dimension Theory of Hyperbolic Flows. Springer Monographs in Mathematics. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00548-5_4

Download citation

Publish with us

Policies and ethics