Skip to main content

Characterisation and Generation of High Impulse Voltages and Currents

  • Chapter
  • First Online:
High Impulse Voltage and Current Measurement Techniques

Abstract

Transmission and distribution of electrical energy involves the application of high-voltage apparatuses like power transformers, switchgears, surge arrestors, insulators, power cables, transformers, etc. They are exposed to high transient voltages and currents due to internal and external overvoltages. Before commissioning, they are therefore tested for reliability with standard impulse voltages or currents. Depending on the apparatus and its proposed application, the specifications prescribe different types of test impulses, e.g., lightning, switching and chopped impulse voltages as well as exponential, rectangular and short-time alternating currents. For on-site voltage tests, oscillating lightning and switching impulse voltages are specified in addition. The standard impulses are defined by their test voltage value (or test current value) and at least two time parameters, with tolerances during generation and uncertainties during measurement. The background and specification of the new evaluation procedures in IEC 60060 concerning overshoots and oscillations superposed on lightning impulse voltages are treated in detail. This includes the presentation of the frequency-dependent test voltage function k(f) and the filtering method, obtained both as the result of world-wide round-robin tests. In the latter part of this chapter, fundamental circuits for generating high-voltage and high-current impulses are given, e.g., the multi-stage Marx generator for generating impulse voltages of up to several megavolts and the impulse current generator with crowbar gap arrangement for preventing undershoots of impulse currents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEC 60060-1: High-voltage test techniques—Part 1: General definitions and test requirements (2010)

    Google Scholar 

  2. IEC 60060-2: High-voltage test techniques—Part 2: Measuring systems (2010)

    Google Scholar 

  3. Schon, K.: Korrektur des Scheitelwertes von Keilstoßspannungen unter Berücksichtigung des genauen Abschneidezeitpunktes. etz-Archiv Bd. vol. 5 pp. 233–237 (1983)

    Google Scholar 

  4. Berlijn, S.: Influence of lightning impulses to insulating systems. Dissertation, TU Graz (2000)

    Google Scholar 

  5. Simón, P., Garnacho, F., Berlijn, S.M., Gockenbach, E.: Determining the test voltage factor function for the evaluation of lightning impulses with oscillations and/or overshoot. IEEE Trans. PWRD 21, 560–566 (2006)

    Google Scholar 

  6. Li, Y., Rungis, J.: Evaluation of parameters of lightning impulses with overshoots. 13th ISH Delft p. 514 (2003)

    Google Scholar 

  7. Li, Y., Rungis, J.: Analysis of lightning voltage with overshoot. 14th ISH Beijing paper B-08 (2005)

    Google Scholar 

  8. Berlijn, S., Garnacho, F., Gockenbach, E.: An improvement of the evaluation of lightning impulse test voltages using the k-factor. 13th ISH Delft paper 743 (2003)

    Google Scholar 

  9. Hällström, J. et al.: Applicability of different implementations of K-factor filtering schemes for the revision of IEC 60060-1 and -2. 14th ISH Beijing paper B 32 (2005)

    Google Scholar 

  10. Lewin, P.L., Tran, T.N., Swaffield, D.J., Hällström, J.: Zero phase filtering for lightning impulse evaluation: A K-factor filter for the revision of IEC 60060–1 and -2. IEEE Trans. PWRD 23, 3–12 (2008)

    Google Scholar 

  11. Schon, K.: Digital filtering of hv lightning impulses. IEEE panel session “digital techniques in HV tests”, Long Beach, California (1989)

    Google Scholar 

  12. Sato, S., Harada, T.: Lightning impulse parameter determination by means of moving average method. 13th ISH Delft paper 807 (2003)

    Google Scholar 

  13. Li, Y., Rungis, J.: Precision digital filters for high voltage impulse measuring systems. IEEE Trans. PWRD 14, 1213–1220 (1999)

    Google Scholar 

  14. Gockenbach, E.: A simple and robust evaluation procedure for high-voltage impulses. IEEE International Symposium on Digital Techniques in High Voltage Measurement. Session 3, Toronto, (1991)

    Google Scholar 

  15. IEC 60060-3: Definitions and requirements for on-site testing (2006)

    Google Scholar 

  16. Hauschild, W.: Der künftige IEC-Standard IEC 60060-3 Hochspannungsprüfungen vor Ortund seine Bedeutung für die off-line Diagnostik. ETG-Fachtagung Diagnostik elektrischer Betriebsmittel, Köln ETG-FB 97, p. 35. VDE Verlag Berlin Offenbach (2004)

    Google Scholar 

  17. Schwab, A.J., Herold, J.: Electromagnetic interference in impulse measuring systems. IEEE Trans. PES 93, 384–390 (1974)

    Google Scholar 

  18. IEC 62475: High current test techniques—general definitions, test requirements and measuring systems (2010)

    Google Scholar 

  19. Wolf, J., Gamlin, M.: A new modular design for a new generation of impulse voltage generators. 13th ISH Delft paper 797 (2003)

    Google Scholar 

  20. Stolle, D., Peier, D.: Reproducibility of Marx generators. 5th ISH Braunschweig paper 61.04 (1987)

    Google Scholar 

  21. Yao, Z.G.: The standard lightning impulse waveforming in a test system including long HV lead. 5th ISH Braunschweig paper 63.15 (1987)

    Google Scholar 

  22. Lakshmi, P. V., Sarma, S., Singh, B. P., Tiwari, R. K.: Determination of tuning parameters for reducing the overshoot during impulse test of power transformer. 13th ISH Delft paper 87 (2003)

    Google Scholar 

  23. Schwenk, K., Gamlin, M.: Load range extension methods for lightning impulse testing with high voltage impulse generators. 14th ISH Beijing paper B-78 (2005)

    Google Scholar 

  24. Kannan, S.R., Rao, Y.N.: Prediction of the parameters of an impulse generator for transformer testing. Proc. IEE 120(9), 1001–1005 (1973)

    Google Scholar 

  25. Glaninger, P.: Stoßspannungsprüfung an elektrischen Betriebsmitteln kleiner Induktivität. 2nd ISH Zürich pp. 140-144 (1975)

    Google Scholar 

  26. Feser, K.: Circuit design of impulse generators fort the lightning impulse voltage testing of transformers. Haefely Scientific Document E1-41. Translation of the paper: Auslegung von Stoßgeneratoren für die Blitzstoßspannungsprüfung von Transformatoren. Bull. SEV 69 pp. 973–979 (1978)

    Google Scholar 

  27. Etzel, O., Helmchen, G.: Berechnung der Elemente des Stoßspannungskreises für die Stoßspannungen 1,2/50, 1,2/5 und 1,2/200. ETZ-A 85, 578–582 (1964)

    Google Scholar 

  28. Leister, N., Schufft, W.: Virtual ASP-based impulse generator. Proceedings of 13th ISH Delft, pp. 272–275 (2003)

    Google Scholar 

  29. Heilbronner, F.: Firing and voltage shape of multistage impulse generators. IEEE Trans. PAS 90, 2233–2238 (1971)

    Google Scholar 

  30. Del Vecchio. R.M., Ahuja, R., Frenette, R.: Determining ideal impulse generator settings from a generator-transformer circuit model. IEEE Trans. PWRD 7, 1 (2002)

    Google Scholar 

  31. Schufft, W., Hauschild, W., Pietsch, R.: Determining impulse generator settings for various test cases with the help of a www-based simulation program. 14th ISH Beijing, paper J58 (2005)

    Google Scholar 

  32. Goody, R.W.: OrCAD PSpice for WINDOWS, vol. I–III, Prentice Hall (2001)

    Google Scholar 

  33. Sato, S.: Automatic determination of circuit constants fulfilling the given impulse time parameters. 15th ISH Ljubljana, paper T10-313 (2007)

    Google Scholar 

  34. Kind, D., Salge, J.: Über die Erzeugung von Schaltspannungen mit Hochspannungsprüftransformatoren. ETZ-A 86, 648–651 (1965)

    Google Scholar 

  35. IEC 60052: Voltage measurement by means of standard air gaps (2002)

    Google Scholar 

  36. Feser, K., Rodewald, A.: A triggered multiple chopping gap for lightning and switching impulses. 1st ISH München, pp. 124–131 (1972)

    Google Scholar 

  37. McDonald, D.F., Benning, C.J., Brient, S.J.: Subnanosecond risetime multikilovolt pulse generator. Rev. Sci. Instr. 36, 504–506 (1965)

    Article  Google Scholar 

  38. Kärner, H.: Erzeugung steilster Stoßspannungen hoher Amplitude. Bull. SEV 58, 1096–1110 (1967)

    Google Scholar 

  39. Feser, K., Modrusan, M., Sutter, H.: Steep front impulse generators. 3rd ISH Mailand, paper 41.06 (1979)

    Google Scholar 

  40. Dams, J., Dunz, T., Küchler, A., Schwab, A.: Design and operation of a Terawatt pulse-power generator. 5th ISH Braunschweig, paper 61.02 (1987)

    Google Scholar 

  41. Salge, J., Peier, D., Brilka, R., Schneider, D.: Application of inductive energy storage for the production of intense magnetic fields. Proceedings of 6th Symposium on Fusion Technology, Aachen (1970)

    Google Scholar 

  42. Feser, K. et al.: MIGUS—A flexible, fully automatic EMP-simulator. EMC Conference, Zürich (1987)

    Google Scholar 

  43. Darrah, J.H. et al. (eds.): Special joint issue on the nuclear electromagnetic pulse. IEEE Trans. Electromag. Compat. EMC-20, pp. 1–193 (1978)

    Google Scholar 

  44. Modrusan, M.: Realisation of the prescribed exponential impulse currents for different kinds of test samples. 2nd ISH Zürich, vol. 1, pp. 155–160 (1975)

    Google Scholar 

  45. Schwab, A., Imo, F.: Berechnung von Stoßstromkreisen für Exponentialströme. Bull SEV/VSE 68, 1310–1313 (1977)

    Google Scholar 

  46. Körbler, B., Pack, S.: Analysis of an impulse current generator. 12th ISH Bangalore, paper 7-22 (2001)

    Google Scholar 

  47. Zhao, G., Zang, X.: EMTP analysis of impulse voltage generator circuit. 14th ISH Beijing, paper A-11 (2005)

    Google Scholar 

  48. Zischank, W.: A surge current generator with a double-crowbar spark gap for the simulation of direct lightning stroke effects. 5th ISH Braunschweig, paper 61.07 (1987)

    Google Scholar 

  49. Pietsch, R., Baronick, M., Kubat, M.: Impulse current test system with crowbar gap extension for surge arrester testing. 15th ISH Ljubljana, paper T10-745 (2007)

    Google Scholar 

  50. Salge, J.: Drahtexplosionen in induktiven Stromkreisen. Habilitationsschrift TU Braunschweig (1970)

    Google Scholar 

  51. Feser, K., Modrusan, M., Sutter, H.: Simulation of multiple lightning strokes in laboratory. 3rd ISH Mailand, paper 41.05 (1979)

    Google Scholar 

  52. Klein, T., Köhler, W., Feser, K.: Exponential current generator for multiple pulses. 12th ISH Bangalore, paper 7-21 (2001)

    Google Scholar 

  53. Modrusan, M.: Long-duration impulse current generator for arrester tests according to IEC recommendations. Haefely Scientific Document E1-38. Translation of the paper: Langzeit-Stoßstromgenerator für die Ableiterprüfung gemäß CEI Empfehlung. Bull. SEV 68, pp. 1304–1309 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Schon .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schon, K. (2013). Characterisation and Generation of High Impulse Voltages and Currents. In: High Impulse Voltage and Current Measurement Techniques. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00378-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00378-8_2

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00377-1

  • Online ISBN: 978-3-319-00378-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics