Skip to main content

Progress in Sensor Biocompatibility

  • Chapter
  • First Online:
Biosensors and Invasive Monitoring in Clinical Applications

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 1005 Accesses

Abstract

Two main approaches have been followed to improve sensors biocompatibility: elimination of biological responses by means of coatings and surface modifications, and substance releasing sensors that increase this biological response further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ates M, Sarac AS (2009) Conducting polymer coated carbon surfaces and biosensor applications. Prog Org Coat 66:337–358

    Article  Google Scholar 

  • Barsan MM, Pinto EM, Florescu M, Brett CMA (2009) Development and characterization of a new conducting carbon composite electrode. Anal Chim Acta 635:71–78

    Article  Google Scholar 

  • Brammer KS, Choi C, Oh S, Cobb CJ, Connelly LS, Loya M, Kong SD, Jin S (2009) Antibiofouling, sustained antibiotic release by Si nanowire templates. Nano Lett 9:3570–3574

    Article  Google Scholar 

  • Charville GW, Hetrick EM, Geer CB, Schoenfisch MH (2008) Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release. Biomaterials 29:4039–4044

    Article  Google Scholar 

  • Dungel P, Long N, Yu B, Moussy Y, Moussy F (2008) Study of the effects of tissue reactions on the function of implanted glucose sensors. J Biomed Mater Res, Part A 85:699–706

    Article  Google Scholar 

  • Frost MC, Meyerhoff ME (2002) Implantable chemical sensors for real-time clinical monitoring: progress and challenges. Curr Opin Chem Biol 6:633–641

    Article  Google Scholar 

  • Frost MC, Meyerhoff ME (2004) Fabrication and in vivo evaluation of nitric oxide-releasing electrochemical oxygen-sensing catheters. Methods in Enzymology

    Google Scholar 

  • Frost MC, Rudich SM, Zhang H, Maraschio MA, Meyerhoff ME (2002) In vivo biocompatibility and analytical performance of intravascular amperometric oxygen sensors prepared with improved nitric oxide-releasing silicone rubber coating. Anal Chem 74:5942–5947

    Article  Google Scholar 

  • Frost MC, Batchelor MM, Lee Y, Zhang H, Kang Y, Oh B, Wilson GS, Gifford R, Rudich SM, Meyerhoff ME (2003) Preparation and characterization of implantable sensors with nitric oxide release coatings. Microchem J 74:277–288

    Article  Google Scholar 

  • Frost MC, Reynolds MM, Meyerhoff ME (2005) Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices. Biomaterials 26:1685–1693

    Article  Google Scholar 

  • Gant RM, Abraham AA, Hou Y, Cummins BM, Grunlan MA, Coté GL (2010) Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors. Acta Biomater 6:2903–2910

    Article  Google Scholar 

  • Guiseppi-Elie A (2010) Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31:2701–2716

    Article  Google Scholar 

  • Guiseppi-Elie A (2011) An implantable biochip to influence patient outcomes following trauma-induced hemorrhage. Anal Bioanal Chem 399:403–419

    Article  Google Scholar 

  • Hetrick EM, Prichard HL, Klitzman B, Schoenfisch MH (2007) Reduced foreign body response at nitric oxide-releasing subcutaneous implants. Biomaterials 28:4571–4580

    Article  Google Scholar 

  • Jordan SW, Chaikof EL (2007) Novel thromboresistant materials. J Vasc Surg 45:104–115

    Article  Google Scholar 

  • Justin G, Finley S, Abdur Rahman AR, Guiseppi-Elie A (2009) Biomimetic hydrogels for biosensor implant biocompatibility: electrochemical characterization using micro-disc electrode arrays (MDEAs). Biomed Microdevices 11:103–115

    Article  Google Scholar 

  • Kemp MM, Linhardt RJ (2010) Heparin-based nanoparticles. Wiley Interdisc Rev: Nanomed Nanobiotechnol 2:77–87

    Article  Google Scholar 

  • Klueh U, Dorsky DI, Kreutzer DL (2005) Enhancement of implantable glucose sensor function in vivo using gene transfer-induced neovascularization. Biomaterials 26:1155–1163

    Article  Google Scholar 

  • Kou Y, Wan A (2008) Preparation of NO releasing polymers and their applications for biomedical devices. Prog Chem 20:729–739

    Google Scholar 

  • Kyriacou G, Vadgama P, Wang W (2006) Characterization of a laminar flow cell for the prevention of biosensor fouling. Med Eng Phys 28:989–998

    Article  Google Scholar 

  • Marxer SM, Robbins ME, Schoenfisch MH (2005) Sol-gel derived nitric oxide-releasing oxygen sensors. Analyst 130:206–212

    Article  Google Scholar 

  • Narayan RJ, Jin C, Menegazzo N, Mizaikoff B, Gerhardt RA, Andara M, Agarwal A, Shih CC, Shih CM, Lin SJ, Su YY (2007) Nanoporous hard carbon membranes for medical applications. J Nanosci Nanotechnol 7:1486–1493

    Article  Google Scholar 

  • Nichols SP, Koh A, Storm WL, Shin JH, Schoenfisch MH (2013) Biocompatible materials for continuous glucose monitoring devices. Chem Rev

    Google Scholar 

  • Park J, McShane MJ (2010) Dual-function nanofilm coatings with diffusion control and protein resistance. ACS Appl Mater Interfaces 2:991–997

    Article  Google Scholar 

  • Popov C, Kulisch W (2011) Nanocrystalline diamond films for biosensor applications. NATO Sci Peace Secur Ser B: Phys Biophys

    Google Scholar 

  • Prabhakar PK, Raj S, Anuradha PR, Sawant SN, Doble M (2011) Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite. Colloids Surf, B 86:146–153

    Article  Google Scholar 

  • Qureshi A, Kang WP, Davidson JL, Gurbuz Y (2009) Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam Relat Mater 18:1401–1420

    Article  Google Scholar 

  • Reynolds MM, Frost MC, Meyerhoff ME (2004) Nitric oxide-releasing hydrophobic polymers: preparation, characterization, and potential biomedical applications. Free Radical Biol Med 37:926–936

    Article  Google Scholar 

  • Reynolds MM, Saavedra JE, Showalter BM, Valdez CA, Shanklin AP, Oh BK, Keefer LK, Meyerhoff ME (2010) Tailored synthesis of nitric oxide-releasing polyurethanes using O 2-protected diazeniumdiolated chain extenders. J Mater Chem 20:3107–3114

    Article  Google Scholar 

  • Schoenfisch MH, Zhang H, Frost MC, Meyerhoff ME (2002) Nitric oxide-releasing fluorescence-based oxygen sensing polymeric films. Anal Chem 74:5937–5941

    Article  Google Scholar 

  • Shin JH, Schoenfisch MH (2006) Improving the biocompatibility of in vivo sensors via nitric oxide release. Analyst 131:609–615

    Article  Google Scholar 

  • Shin JH, Marxer SM, Schoenfisch MH (2004) Nitric oxide-releasing sol-gel particle/polyurethane glucose biosensors. Anal Chem 76:4543–4549

    Article  Google Scholar 

  • Srivastava R, Jayant RD, Chaudhary A, McShane MJ (2011) “Smart tattoo” glucose biosensors and effect of coencapsulated anti-inflammatory agents. J Diabetes Sci Technol 5:76–85

    Google Scholar 

  • Vachon D (2006) Anti-inflammatory biosensor for reduced biofouling and enhanced sensor performance. United States patent application, Northridge

    Google Scholar 

  • Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F (2010) Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 25:1553–1565

    Article  Google Scholar 

  • Ward WK, Quinn MJ, Wood MD, Tiekotter KL, Pidikiti S, Gallagher JA (2003) Vascularizing the tissue surrounding a model biosensor: How localized is the effect of a subcutaneous infusion of vascular endothelial growth factor (VEGF)? Biosens Bioelectron 19:155–163

    Article  Google Scholar 

  • Ward WK, Hansen JC, Massoud RG, Engle JM, Takeno MM, Hauch KD (2010) Controlled release of dexamethasone from subcutaneously-implanted biosensors in pigs: Localized anti-inflammatory benefit without systemic effects. J Biomed Mater Res, Part A 94:280–287

    Article  Google Scholar 

  • Wendel HP, Ziemer G (1999) Coating-techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation. Eur J Cardiothorac Surg 16:342–350

    Article  Google Scholar 

  • Wisniewski N, Reichert M (2000) Methods for reducing biosensor membrane biofouling. Colloids Surf, B 18:197–219

    Article  Google Scholar 

  • Wu Y, Meyerhoff ME (2008) Nitric oxide-releasing/generating polymers for the development of implantable chemical sensors with enhanced biocompatibility. Talanta 75:642–650

    Article  Google Scholar 

  • Wu Y, Rojas AP, Griffith GW, Skrzypchak AM, Lafayette N, Bartlett RH, Meyerhoff ME (2007) Improving blood compatibility of intravascular oxygen sensors via catalytic decomposition of S-nitrosothiols to generate nitric oxide in situ. Sens Actuators, B 121:36–46

    Article  Google Scholar 

  • Yang W, Xue H, Carr LR, Wang J, Jiang S (2011) Zwitterionic poly(carboxybetaine) hydrogels for glucose biosensors in complex media. Biosens Bioelectron 26:2454–2459

    Article  Google Scholar 

  • Yu B, Moussy Y, Moussy F (2005) Coil-type implantable glucose biosensor with excess enzyme loading. Front Biosci: J Virtual Libr 10:512–520

    Article  Google Scholar 

  • Yun YH, Eteshola E, Bhattacharya A, Dong Z, Shim JS, Conforti L, Kim D, Schulz MJ, Ahn CH, Watts N (2009) Tiny medicine: nanomaterial-based biosensors. Sensors 9:9275–9299

    Article  Google Scholar 

  • Zhao H, Feng Y, Guo J (2011) Polycarbonateurethane films containing complex of copper(II) catalyzed generation of nitric oxide. J Appl Polym Sci 122:1712–1721

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma P. Córcoles .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Córcoles, E.P., Boutelle, M.G. (2013). Progress in Sensor Biocompatibility. In: Biosensors and Invasive Monitoring in Clinical Applications. SpringerBriefs in Applied Sciences and Technology. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00360-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00360-3_4

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00359-7

  • Online ISBN: 978-3-319-00360-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics