Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 869 Accesses

Abstract

One of the most crucial requirements of optoelectronics and photonics industry is the realization of inexpensive and efficient transparent electrodes (TEs), i.e., films that permit one to bring electrical currents or potentials in the proximity of optically active regions without significant loss of optical energy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.S. Ginley, H. Hosono, D.C. Paine, Handbook of transparent conductors (Springer, Berlin, 2010)

    Google Scholar 

  2. A. Facchetti, T.J. Marks, Transparent electronics (Wiley, Chichester, 2010)

    Book  Google Scholar 

  3. C.G. Granqvist, Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater. Sol. Cells 91, 1529 (2007)

    Article  Google Scholar 

  4. R.G. Gordon, Criteria for choosing transparent conductors. MRS Bull. 25, 52 (2000)

    Article  Google Scholar 

  5. J.F. Wager, D.A. Keszler, R.E. Presley, Transparent electronics (Springer, Berlin, 2010)

    Google Scholar 

  6. G.J. Exarhos, X.D. Zhou, Discovery-based design of transparent conducting oxide films. Thin Solid Films 515, 7025 (2007)

    Article  ADS  Google Scholar 

  7. D.S. Ginley, C. Bright, Transparent conducting oxides. MRS Bull. 25, 15 (2000)

    Article  Google Scholar 

  8. B.G. Lewis, D.C. Paine, Applications and processing of transparent conducting oxides. MRS Bull. 25, 22 (2000)

    Article  Google Scholar 

  9. T. Minami, New n-type transparent conducting oxides. MRS Bull. 25, 38 (2000)

    Article  Google Scholar 

  10. L. Hu, H. Wu, Y. Cui, Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 36, 760 (2011)

    Article  Google Scholar 

  11. S.K. Hau, H.L. Yip, A.K.Y. Jen, A review on the development of the inverted polymer solar cell architecture. Polym. Rev. 50, 474 (2010)

    Article  Google Scholar 

  12. Y. Nasuno, N. Kohama, K. Nishimura, T. Hayakawa, H. Taniguchi, M. Shimizu, Effect of perforated transparent electrodes on light transmittance and light scattering in substrates used for microcrystalline silicon thin-film solar cells. Appl. Phys. Lett. 88, 71909 (2006)

    Article  Google Scholar 

  13. D.S. Hecht, L. Liangbing, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene and metallic nanostructures. Adv. Mater. 23, 1 (2011)

    Article  Google Scholar 

  14. A. Kumar, C. Zhou, The race to replace tin-doped indium oxide: which material will win? ACS Nano 4, 11 (2010)

    Article  Google Scholar 

  15. T. Minami, Present status of transparent conducting oxide thin film development for indium tin oxide substitutes. Thin Solid Films 516, 5822 (2008)

    Article  ADS  Google Scholar 

  16. C.A. DiFrancesco, M.W. George, J.F. Carlin Jr, A.C. Tolcin, USGS Indium Report (2007)

    Google Scholar 

  17. O. Inganas, Avoiding indium. Nat. Photonics 5, 201 (2011)

    Article  ADS  Google Scholar 

  18. J.C. Scott, J.H. Kaufman, P.J. Brock, R.D. Pietro, J. Salem, J. Goitia, Degradation and failure of MEH-PPV light-emitting diodes. J. Appl. Phys. 79, 2745 (1996)

    Article  ADS  Google Scholar 

  19. A. Andersson, N. Johansson, P. Broms, N. Yu, D. Lupo, W.R. Salaneck, Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Adv. Mater. 10, 859 (1999)

    Article  Google Scholar 

  20. I. Hamberg, C.G. Granqvist, Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123 (1986)

    Article  ADS  Google Scholar 

  21. C.G. Granqvist, A. Hultaker, Transparent and conducting ITO films: new developments and applications. Thin Solid Films 411, 1 (2002)

    Article  ADS  Google Scholar 

  22. B.H. Liao, C.C. Kuo, P.J. Chen, C.C. Lee, Fluorine-doped tin oxide films grown by pulsed direct current magnetron sputtering with an Sn target. Appl. Opt. 50, C106 (2011)

    Article  ADS  Google Scholar 

  23. S. Fern andez, F. B. Naranjo, Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications, Sol. Energy Mater. Sol. Cells 94, 157 (2010)

    Google Scholar 

  24. C.H. Huang, H.L. Cheng, W.E. Chang, M.S. Wong, Comprehensive characterization of DC sputtered AZO films for CIGS photovoltaics. J. Electrochem. Soc. 158, H510 (2011)

    Article  Google Scholar 

  25. H.L. Hartnagal, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting transparent thin films (Inst. Phys. Publ., Philadelphia, 1995)

    Google Scholar 

  26. J.Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Solution processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689 (2008)

    Article  ADS  Google Scholar 

  27. C.H. Liu, X. Yu, Silver nanowire-based transparent, flexible, and conductive thin film. Nano Express 6, 75 (2011)

    Google Scholar 

  28. S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, J.N. Coleman, Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3, 1767 (2009)

    Article  Google Scholar 

  29. A.R. Rathmell, S.M. Bergin, Y.L. Hua, Z.Y. Li, B.J. Wiley, The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films 22, 3558 (2010)

    Google Scholar 

  30. J.M. Baik, S.J. Lee, M. Moskovits, Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires. Nano Lett. 9, 672 (2009)

    Google Scholar 

  31. Z. Li, Y. Jia, J. Wei, K. Wang, Q. Shu, X. Gui, H. Zhu, A. Cao, D. Wu, Large area, highly transparent carbon nanotube spiderwebs for energy harvesting. J. Mater. Chem. 20, 7236 (2010)

    Article  Google Scholar 

  32. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and photovoltaics. Nat. Photonics 4, 611 (2010)

    Article  ADS  Google Scholar 

  33. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large area graphene films for high performance transparent conductive electrodes. Nano Lett. 9, 4359 (2009)

    Article  ADS  Google Scholar 

  34. R. Jackson, B. Domercq, R. Jain, B. Kippelen, S. Graham, Stability of doped transparent carbon nanotube electrodes. Adv. Funct. Mater. 18, 2548 (2008)

    Article  Google Scholar 

  35. X. Liang, B.A. Sperling, I. Calizo, G. Cheng, C.A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A.R.H. Walker, Z. Liu, L.M. Peng, C.A. Richter, Toward clean and crackless transfer of graphene. ACS Nano 5, 9144 (2011)

    Article  Google Scholar 

  36. S.I. Na, S.S. Kim, J. Jo, D.Y. Kim, Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv. Mater. 20, 4061 (2008)

    Article  Google Scholar 

  37. S. Sakkopoulos, E. Vitoratos, E. Dalas, Conductivity degradation due to thermal aging in conducting polyaniline and polypyrrole. Synth. Met. 92, 63 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhriti Sundar Ghosh .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghosh, D.S. (2013). Introduction. In: Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00348-1_1

Download citation

Publish with us

Policies and ethics