Skip to main content

Diffusion Processes

  • Chapter
Stochastic Processes

Abstract

Here we discuss diffusion processes as they occur in various areas of physics. We first return to a discussion of random walks, treating the Polya problem and continuous time random walks. Then Brownian motion is analyzed in detail. We discuss the Kramers problem and exemplify the application of statistical and stochastic concepts to physics using the kinetic Ising model. Finally, following E. Nelson, we show how conservative diffusion processes can be described and that this description can be used as a foundation of quantum mechanics from which the Schrödinger equation can be derived. We apply this approach to the tunnel problem and to quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Time homogeneity means that p(x,t|x 0,0) only depends on the time difference.

  2. 2.

    This is an exercise in van Kampen’s book [101], Chap. XII.

References

  1. U. Balucani, M. Zoppi, Dynamics of the Liquid State (Oxford University Press, Oxford, 2003)

    Google Scholar 

  2. K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics, 5th edn. (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  3. J.-P. Bouchaud, A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  4. S. Chandrasekhar, Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1 (1943). See also in [209]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. W.T. Coffey, Yu.P. Kalmykov, J.T. Waldron, The Langevin Equation (World Scientific, Singapore, 2005)

    Google Scholar 

  6. T.G. Dankel Jr., Mechanics on manifolds and the incorporation of spin into Nelson’s stochastic mechanics. Arch. Ration. Mech. Anal. 37, 192 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Dohrn, F. Guerra, Nelson’s stochastic mechanics on Riemannian manifolds. Lett. Nuovo Cimento 22, 121 (1978)

    Article  MathSciNet  Google Scholar 

  8. D. Dohrn, F. Guerra, P. Ruggiero, Spinning particles and relativistic particles in the framework of Nelson’s stochastic mechanics, in Feynman Path Integrals, ed. by S. Albeverio. Lecture Notes in Physics, vol. 106 (Springer, Berlin, 1979)

    Chapter  Google Scholar 

  9. J.L. Doob, The Brownian movement and stochastic equations. Ann. Math. 43, 351 (1942). See also in [209]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geförderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549 (1905)

    Article  MATH  Google Scholar 

  11. M. Emery, Stochastic Calculus in Manifolds (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  12. W. Feller, An Introduction to Probability Theory and its Applications, vol. 2 (Wiley, New York, 1966)

    MATH  Google Scholar 

  13. G.R. Fleming, P. Hänggi (eds.), Activated Barrier Crossing: Applications in Physics, Chemistry and Biology (World Scientific, Singapore, 1993)

    Google Scholar 

  14. P.J. Flory, Statistical Mechanics of Chain Molecules (Hanser, Munich, 1988)

    Google Scholar 

  15. E. Frey, K. Kroy, Brownian motion: a paradigm of soft matter and biological physics. Ann. Phys. (Leipz.) 14, 20 (2005)

    Article  ADS  MATH  Google Scholar 

  16. R.J. Glauber, Time-dependent statistics of the Ising model. J. Math. Phys. 4, 294 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J. Glimm, A. Jaffe, Quantum Physics—A Functional Integral Point of View, 2nd edn. (Springer, New York, 1987)

    Google Scholar 

  18. I.S. Gradshteyn, I.M. Ryzhik, A. Jeffrey (eds.), Table of Integrals, Series and Products (Academic Press, San Diego, 1994)

    MATH  Google Scholar 

  19. R. Graham, Macroscopic theory of activated decay of metastable states. J. Stat. Phys. 60, 675 (1990)

    Article  ADS  Google Scholar 

  20. F. Guerra, Structural aspects in stochastic mechanics and stochastic field theory, in New Stochastic Methods in Physics, ed. by C. De Witt-Morette, K.D. Elworthy, (1981). See also in Phys. Rep. 77, 263 (1981)

    Google Scholar 

  21. F. Guerra, L.M. Morato, Quantization of dynamical systems and stochastic control theory. Phys. Rev. D 27, 1774 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  22. J. Hager, L. Schäfer, θ-point behavior of dilute polymer solutions: can one observe the universal logarithmic corrections predicted by field theory? Phys. Rev. E 60, 2071 (1999)

    Article  ADS  Google Scholar 

  23. P. Hänggi, Escape from a metastable state. J. Stat. Phys. 42, 105 (1986)

    Article  ADS  Google Scholar 

  24. P. Hänggi, H. Grabert, P. Talkner, H. Thomas, Bistable systems: master equation versus Fokker-Planck modeling. Phys. Rev. A 29, 371 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  25. P. Hänggi, P. Talkner, M. Berkovec, Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  Google Scholar 

  26. J.W. Haus, K. Kehr, Diffusion in regular and disordered lattices. Phys. Rep. 150, 263 (1987)

    Article  ADS  Google Scholar 

  27. K. Imafuku, O. Ichiro, Y. Yamanaka, Tunneling time based on the quantum diffusion process approach. Phys. Lett. A 204, 329 (1995)

    Article  ADS  Google Scholar 

  28. E. Ising, Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253 (1925)

    Article  ADS  Google Scholar 

  29. G. Jona-Lasinio, F. Martinelli, E. Scoppola, The semi-classical limit of quantum mechanics: a qualitative theory via stochastic mechanics, in New Stochastic Methods in Physics, ed. by C. De Witt-Morette, K.D. Elworthy, (1981). See also in Phys. Rep. 77, 313 (1981)

    Google Scholar 

  30. M. Kac, Random walk and the theory of Brownian motion. Am. Math. Mon. 54, 369 (1947). See also in [209]

    Article  MATH  Google Scholar 

  31. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1985)

    Google Scholar 

  32. N.G. van Kampen, Brownian motion on a manifold. J. Stat. Phys. 44, 1 (1986)

    Article  ADS  MATH  Google Scholar 

  33. H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284 (1940)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  35. R. Landauer, T. Martin, Barrier interaction time in tunneling. Rev. Mod. Phys. 66, 217 (1994)

    Article  ADS  Google Scholar 

  36. D.A. Lavis, G.M. Bell, The Statistical Mechanics of Lattice Systems, vol. 1 (Springer, Berlin, 1999)

    Book  Google Scholar 

  37. D.A. Lavis, G.M. Bell, The Statistical Mechanics of Lattice Systems, vol. 2 (Springer, Berlin, 1999)

    Book  Google Scholar 

  38. K. Lindenberg, B. West, The Nonequilibrium Statistical Mechanics of Open and Closed Systems (VCH, Weinheim, 1991)

    Google Scholar 

  39. E. Madelung, Quantentheorie in Hydrodynamischer Form. Z. Phys. 40, 322 (1926)

    ADS  MATH  Google Scholar 

  40. N. Madras, G. Slade, The Self-Avoiding Walk (Birkhäuser, Boston, 1995)

    Google Scholar 

  41. M. McClendon, H. Rabitz, Numerical simulations in stochastic mechanics. Phys. Rev. A 37, 3479 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  42. B.M. McCoy, T.T. Wu, The Two-Dimensional Ising Model (Cambridge University Press, Cambridge, 1973)

    MATH  Google Scholar 

  43. A. Messiah, Quantum Mechanics, vol. 1 (North-Holland, Amsterdam, 1969)

    Google Scholar 

  44. A. Messiah, Quantum Mechanics, vol. 2 (North-Holland, Amsterdam, 1969)

    Google Scholar 

  45. H. Metiu, K. Kitahara, J. Ross, Statistical mechanical theory of the kinetics of phase transitions, in Fluctuation Phenomena, ed. by E.W. Montroll, J.L. Lebowitz (North-Holland, Amsterdam, 1987)

    Google Scholar 

  46. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  47. E.W. Montroll, M.F. Shlesinger, On the wonderful world of random walks, in Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, ed. by J.L. Lebowitz, E.W. Montroll (Elsevier, Amsterdam, 1984)

    Google Scholar 

  48. E.W. Montroll, G.H. Weiss, Random walks on lattices II. J. Math. Phys. 6, 167 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  49. E.W. Montroll, B.J. West, On an enriched collection of stochastic processes, in Fluctuation Phenomena, ed. by E.W. Montroll, J.L. Lebowitz (North-Holland, Amsterdam, 1987)

    Google Scholar 

  50. E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966)

    Article  ADS  Google Scholar 

  51. E. Nelson, Quantum fluctuations (Princeton University Press, Princeton, 1985)

    MATH  Google Scholar 

  52. E. Nelson, Dynamical Theories of Brownian Motion (Princeton University Press, Princeton, 1967)

    MATH  Google Scholar 

  53. L. Onsager, Crystal statistics I: a two-dimensional model with order disorder transition. Phys. Rev. 65, 117 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. M. Pavon, A new formulation of stochastic mechanics. Phys. Lett. A 209, 143 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. M. Pavon, Hamilton’s principle in stochastic mechanics. J. Math. Phys. 36, 6774 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. M. Pavon, Lagrangian dynamics for classical, Brownian and quantum mechanical particles. J. Math. Phys. 37, 3375 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. W. Paul, D.W. Heermann, K. Binder, Relaxation of metastable states in mean-field kinetic Ising systems. J. Phys. A, Math. Gen. 22, 3325 (1989)

    Article  ADS  Google Scholar 

  58. A.M. Perelomov, Generalized Coherent States and Their Applications (Springer, Berlin, 1986)

    Book  MATH  Google Scholar 

  59. B. Prum, J.C. Fort, Stochastic Processes on a Lattice and Gibbs Measures (Kluwer, Dordrecht, 1991)

    Book  MATH  Google Scholar 

  60. L.E. Reichl, A Modern Course in Statistical Physics (VCH, Weinheim, 2009)

    Google Scholar 

  61. E.J. Janse van Rensburg, Monte Carlo methods for the self-avoiding walk. J. Phys. A, Math. Theor. 42, 323001 (2009)

    Article  MathSciNet  Google Scholar 

  62. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, Berlin, 1996)

    MATH  Google Scholar 

  63. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, London, 2003)

    Google Scholar 

  64. D. Ruelle, Statistical Mechanics—Rigorous Results (Benjamin, New York, 1969)

    MATH  Google Scholar 

  65. D. Shirvanyants, S. Panyukov, Q. Liao, M. Rubinstein, Long-Range correlations in a polymer chain due to its connectivity. Macromolecules 41, 1475 (2008)

    Article  ADS  Google Scholar 

  66. M. von Smoluchowski, Abhandlungen über die Brownsche Bewegung und verwandte Erscheinungen (Akademische Verlagsgesellschaft, Leipzig, 1923)

    Google Scholar 

  67. A.D. Sokal, Monte Carlo methods for the self-avoiding walk, in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, ed. by K. Binder (Oxford University Press, London, 1995)

    Google Scholar 

  68. P. Talkner, Mean first passage time and the lifetime of a metastable state. Z. Phys. B 68, 201 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  69. G.E. Uhlenbeck, L.S. Ornstein, On the theory of Brownian motion. Phys. Rev. 36, 823 (1930). See also in [209]

    Article  ADS  MATH  Google Scholar 

  70. C.W. Wang, G.E. Uhlenbeck, On the theory of Brownian motion II. Rev. Mod. Phys. 17, 323 (1945). See also in [209]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. N. Wax (ed.), Selected Papers on Noise and Stochastic Processes (Dover, New York, 1954)

    MATH  Google Scholar 

  72. G.H. Weiss, Aspects and Applications of the Random Walk (North-Holland, Amsterdam, 1994)

    MATH  Google Scholar 

  73. U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1993)

    MATH  Google Scholar 

  74. J.P. Wittmer, A. Cavallo, H. Xu, J.E. Zabel, P. Polińska, N. Schulmann, H. Meyer, J. Farago, A. Johner, S.P. Obukhov, J. Baschnagel, Scale-free static and dynamical correlations in melts of monodisperse and flory-distributed homopolymers. J. Stat. Phys. 145, 1017 (2011)

    Article  ADS  MATH  Google Scholar 

  75. K. Yasue, Stochastic calculus of variations. J. Funct. Anal. 41, 327 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  76. R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paul, W., Baschnagel, J. (2013). Diffusion Processes. In: Stochastic Processes. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00327-6_3

Download citation

Publish with us

Policies and ethics