Skip to main content

Functional Co-monotony of Processes with Applications to Peacocks and Barrier Options

  • Chapter
  • First Online:
Séminaire de Probabilités XLV

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2078))

Abstract

We show that several general classes of stochastic processes satisfy a functional co-monotony principle, including processes with independent increments, Brownian bridge, Brownian diffusions, Liouville processes, fractional Brownian motion. As a first application, we recover and extend some recent results about peacock processes obtained by Hirsch et al. in (Peacocks and Associated Martingales, with Explicit Constructions, Bocconi & Springer, 2011, 430p) [see also (Peacocks sous l’hypothèse de monotonie conditionnelle et caractérisation des 2-martingales en termes de peacoks, thèse de l’Université de Lorraine, 2012, 169p)] which were themselves motivated by a former work of Carr et al. in (Finance Res. Lett. 5:162–171, 2008) about the sensitivities of Asian options with respect to their volatility and residual maturity (seniority). We also derive semi-universal bounds for various barrier options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Stands for the French acronym PCOC (Processus Croissant pour l’Ordre Convexe).

  2. 2.

    For every α, β, γ ∈ E and every \(\lambda \in \mathbb{R}_{+}\), α ≤ β ⇒ α + γ ≤ β + γ and λ ≥ 0 ⇒ λ α ≤ λ β.

  3. 3.

    The fact that \(A(L_{_{T}}^{2})\) is the Cameron–Martin space i. e. the reproducing space of the covariance operator, which is obvious here, is a general fact for any such decomposition (see [16]).

References

  1. P. Bauman, M. Émery, Peut-on “voir” dans l’espace à n dimensions, L’ouvert 116, 1–8 (2008)

    Google Scholar 

  2. P. Billingsley, Convergence of Probability Measures, 2nd edn. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication (Wiley, New York, 1999), 277p

    Google Scholar 

  3. A.M. Bogso, Peacocks sous l’hypothèse de monotonie conditionnelle et caractérisation des 2-martingales en termes de peacoks, thèse de l’Université de Lorraine, 2012, 169p

    Google Scholar 

  4. P. Carr, C.-O. Ewald, Y. Xiao, On the qualitative effect of volatility and duration on prices of Asian options. Finance Res. Lett. 5, 162–171 (2008)

    Article  Google Scholar 

  5. P.H. Diananda, On nonnegative forms in real variables some or all of which are nonnegative. Proc. Cambridge Philos. Soc. 58, 17–25 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. H.J. Engelbert, On the theorem of T. Yamada and S. Watanabe. Stochast. Stochast. Rep. 36 (3–4), 205–216 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Hall, Discrete problems, in A Survey of Numerical Analysis, ed. by John Todd (McGraw-Hill, New York, 1962)

    Google Scholar 

  8. F. Hirsch, B. Roynette, A new proof of Kellerer’s Theorem. ESAIM: P&S 16, 48–60 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Hirsch, C. Profeta, B. Roynette, M. Yor, Peacocks and Associated Martingales, with Explicit Constructions Bocconi and Springer Series, 3 (Springer, Milan; Bocconi University Press, Milan, 2011), 430p

    Google Scholar 

  10. J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288 (Springer, Berlin, 2003), 661p

    Google Scholar 

  11. K. Joag-Dev, M.D. Perlman, L.D. Pitt, Association of normal random variables and Slepian’s inequality. Ann. Probab. 11(2), 451–455 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics, vol. 113 (Springer, New York, 1991), 470p

    Google Scholar 

  13. H.G. Kellerer, Markov-Komposition und eine Anwendung auf Martingale. (German) Math. Ann. 198, 99–122 (1972)

    Google Scholar 

  14. S. Laruelle, C.A. Lehalle, Optimal posting price of limit orders: learning by trading. arXiv preprint arXiv:1112.2397 (2011)

    Google Scholar 

  15. M. Ledoux, M. Talagrand, Probability in Banach Spaces. Isoperimetry and Processes, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23 (Springer, Berlin, 1991), 480p

    Google Scholar 

  16. H. Luschgy, G. Pagès, Expansions for Gaussian processes and Parseval frames. Electron. J. Probab. 14(42), 1198–1221 (2009)

    MathSciNet  MATH  Google Scholar 

  17. L.D. Pitt, Positively correlated normal variables are associated. Ann. Probab. 10(2), 496–499 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 3rd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293 (Springer, Berlin, 1999), 560p

    Google Scholar 

  19. K.I. Sato, Lévy Distributions and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics (Cambridge University Press, London, 1999), 486p (first japanese edition in 1990)

    Google Scholar 

  20. G. Zbaganu, M. Radulescu, Trading prices when the initial wealth is random. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 10(1), 1–8 (2009)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous referee for constructive suggestions and F. Panloup for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Pagès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pagès, G. (2013). Functional Co-monotony of Processes with Applications to Peacocks and Barrier Options. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLV. Lecture Notes in Mathematics(), vol 2078. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00321-4_15

Download citation

Publish with us

Policies and ethics