Skip to main content

Understanding Hawking Radiation from Simple Models of Atomic Bose-Einstein Condensates

  • Chapter
Analogue Gravity Phenomenology

Part of the book series: Lecture Notes in Physics ((LNP,volume 870))

Abstract

This chapter is an introduction to the Bogoliubov theory of dilute Bose condensates as applied to the study of the spontaneous emission of phonons in a stationary condensate flowing at supersonic speeds. This emission process is a condensed-matter analog of Hawking radiation from astrophysical black holes but is derived here from a microscopic quantum theory of the condensate without any use of the analogy with gravitational systems. To facilitate physical understanding of the basic concepts, a simple one-dimensional geometry with a stepwise homogenous flow is considered which allows for a fully analytical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From the definition of the velocity field v 0, it is immediate to see that the vorticity in the condensate can only appear at points where the density vanishes.

References

  1. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  2. Unruh, W.G.: Phys. Rev. Lett. 46, 1351 (1981)

    Article  ADS  Google Scholar 

  3. Barceló, C., Liberati, S., Visser, M.: Living Rev. Relativ. 8, 12 (2005). Available at URL:http://www.livingreviews.org/lrr-2005-12

    ADS  Google Scholar 

  4. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  5. Jacobson, T.: Phys. Rev. D 44, 1731 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  6. Macher, J., Parentani, R.: Phys. Rev. A 80, 043601 (2009)

    Article  ADS  Google Scholar 

  7. Macher, J., Parentani, R.: Phys. Rev. A 80, 043601 (2009)

    Article  ADS  Google Scholar 

  8. Finazzi, S., Parentani, R.: Phys. Rev. D 83, 084010 (2011)

    Article  ADS  Google Scholar 

  9. Mayoral, C., Recati, A., Fabbri, A., Parentani, R., Balbinot, R., Carusotto, I.: New J. Phys. 13, 025007 (2011)

    Article  ADS  Google Scholar 

  10. Weinfurtner, S., Tedford, E.W., Penrice, M.C.J., Unruh, W.G., Lawrence, G.A.: Phys. Rev. Lett. 106, 021302 (2011)

    Article  ADS  Google Scholar 

  11. Belgiorno, F., Cacciatori, S.L., Clerici, M., Gorini, V., Ortenzi, G., Rizzi, L., Rubino, E., Sala, V.G., Faccio, D.: Phys. Rev. Lett. 105, 203901 (2010)

    Article  ADS  Google Scholar 

  12. Schützhold, R., Unruh, W.G.: Phys. Rev. Lett. 107, 149401 (2011)

    Article  ADS  Google Scholar 

  13. Belgiorno, F., Cacciatori, S.L., Clerici, M., Gorini, V., Ortenzi, G., Rizzi, L., Rubino, E., Sala, V.G., Faccio, D.: Phys. Rev. Lett. 107, 149402 (2011)

    Article  ADS  Google Scholar 

  14. Liberati, S., Prain, A., Visser, M.: arXiv:1111.0214

  15. Finazzi, S., Carusotto, I.: arXiv:1204.3603

  16. Unruh, W.G., Schutzhold, R.: arXiv:1202.6492

  17. Balbinot, R., Fabbri, A., Fagnocchi, S., Recati, A., Carusotto, I.: Phys. Rev. A 78, 021603 (2008)

    Article  ADS  Google Scholar 

  18. Carusotto, I., Fagnocchi, S., Recati, A., Balbinot, R., Fabbri, A.: New J. Phys. 10, 103001 (2008)

    Article  ADS  Google Scholar 

  19. Garay, L.J., Anglin, J.R., Cirac, J.I., Zoller, P.: Phys. Rev. Lett. 85, 4643 (2000)

    Article  ADS  Google Scholar 

  20. Garay, L.J., Anglin, J.R., Cirac, J.I., Zoller, P.: Phys. Rev. A 63, 023611 (2001)

    Article  ADS  Google Scholar 

  21. Mayoral, C., Fabbri, A., Rinaldi, M.: Phys. Rev. D 83, 124047 (2011)

    Article  ADS  Google Scholar 

  22. Recati, A., Pavloff, N., Carusotto, I.: Phys. Rev. A 80, 043603 (2009)

    Article  ADS  Google Scholar 

  23. Fulling, S.A., et al.: Proc. R. Soc. Lond. Ser. A 348, 393 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Lambrecht, A., et al.: Phys. Rev. Lett. 77, 615 (1996)

    Article  ADS  Google Scholar 

  25. Lambrecht, A., et al.: Eur. Phys. J. D 3, 95 (1998)

    Article  ADS  Google Scholar 

  26. Crocce, M., et al.: Phys. Rev. A 66, 033811 (2002)

    Article  ADS  Google Scholar 

  27. Uhlmann, M., et al.: Phys. Rev. Lett. 93, 193601 (2004)

    Article  ADS  Google Scholar 

  28. Yablonovitch, E.: Phys. Rev. Lett. 62, 1742 (1989)

    Article  ADS  Google Scholar 

  29. Braggio, C., et al.: Europhys. Lett. 70, 754 (2005)

    Article  ADS  Google Scholar 

  30. De Liberato, S., et al.: Phys. Rev. Lett. 98, 103602 (2007)

    Article  ADS  Google Scholar 

  31. Carusotto, I., et al.: Phys. Rev. A 77, 063621 (2008)

    Article  ADS  Google Scholar 

  32. De Liberato, S., et al.: Phys. Rev. A 80, 053810 (2009)

    Article  ADS  Google Scholar 

  33. Dodonov, V.V., et al.: Phys. Rev. A 47, 4422 (1993)

    Article  ADS  Google Scholar 

  34. Law, C.K.: Phys. Rev. A 49, 433 (1994)

    Article  ADS  Google Scholar 

  35. Artoni, M., et al.: Phys. Rev. A 53, 1031 (1996)

    Article  ADS  Google Scholar 

  36. Johansson, J.R., et al.: Phys. Rev. Lett. 103, 147003 (2009)

    Article  ADS  Google Scholar 

  37. Johansson, J.R., et al.: Phys. Rev. Lett. 103, 147003 (2009)

    Article  ADS  Google Scholar 

  38. Wilson, C.M., et al.: Phys. Rev. Lett. 105, 233907 (2010)

    Article  ADS  Google Scholar 

  39. Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P.: Nature 479, 376 (2011)

    Article  ADS  Google Scholar 

  40. Carusotto, I., Balbinot, R., Fabbri, A., Recati, A.: Eur. Phys. J. D 56, 391 (2010)

    Article  ADS  Google Scholar 

  41. Jaskula, J.C., et al.: Private communication

    Google Scholar 

  42. Finazzi, S., Parentani, R.: arXiv:1202.6015 [gr-qc]

  43. Finazzi, S., Parentani, R.: J. Phys. Conf. Ser. 314, 012030 (2011)

    Article  ADS  Google Scholar 

  44. Finazzi, S., Parentani, R.: New J. Phys. 12, 095015 (2010)

    Article  ADS  Google Scholar 

  45. Pitaevskii, L., Stringari, S.: Bose-Einstein Condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  46. Castin, Y.: In: Kaiser, R., Westbrook, C., David, F. (eds.) Coherent Atomic Matter Waves. Lecture Notes of les Houches Summer School. Springer, Berlin (2001)

    Google Scholar 

  47. Larré, P.-E., Recati, A., Carusotto, I., Pavloff, N.: Phys. Rev. A 85, 013621 (2012)

    Article  ADS  Google Scholar 

  48. Kamchatnov, A.M., Pavloff, N.: Phys. Rev. A 85, 033603 (2012)

    Article  ADS  Google Scholar 

  49. Greiner, M., Regal, C.A., Stewart, J.T., Jin, D.S.: Phys. Rev. Lett. 94, 110401 (2005)

    Article  ADS  Google Scholar 

  50. Fölling, S., Gerbier, F., Widera, A., Mandel, O., Gericke, T., Bloch, I.: Nature 434, 481 (2005)

    Article  ADS  Google Scholar 

  51. Rom, T., et al.: Nature 444, 733 (2006)

    Article  ADS  Google Scholar 

  52. Perrin, A., Chang, H., Krachmalnicoff, V., Schellekens, M., Boiron, D., Aspect, A., Westbrook, C.I.: Phys. Rev. Lett. 99, 150405 (2007)

    Article  ADS  Google Scholar 

  53. Jeltes, T., McNamara, J.M., Hogervorst, W., Vassen, W., Krachmalnicoff, V., Schellekens, M., Perrin, A., Chang, H., Boiron, D., Aspect, A., Westbrook, C.I.: Nature 445, 402 (2007)

    Article  ADS  Google Scholar 

  54. Hofferberth, S., Lesanovsky, I., Schumm, T., Imambekov, A., Gritsev, V., Demler, E., Schmiedmayer, J.: Nat. Phys. 4, 489 (2008)

    Article  Google Scholar 

  55. Öttl, A., Ritter, S., Köhl, M., Esslinger, T.: Phys. Rev. Lett. 95, 090404 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

Continuous stimulating discussions with S. Finazzi, R. Parentani and N. Pavloff are warmly acknowledged. I.C. acknowledges partial financial support from ERC via the QGBE grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Balbinot .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix, we give the explicit expressions for S Matrix coefficients, to first order in the limit of small ω, for the supersonic-supersonic condition treated in Sect. 9.6. Note in particular how those involved in the vacuum emission (S vl,ur , S ul,vr , S 3r,4l , S 4r,3l ) grow as \(\sqrt{\omega}\) at low ω, while (S 4r,vr , S 3r,ur , S ul,3l , S vl,4l ) tend to constants.

$$\begin{aligned} S_{vl,vr} = & \sqrt{\frac{v_{0}+c_{l}}{v_{0}-c_{l}}}\frac {(c_{r}^{2}-c_{l}^{2})\sqrt{\omega\xi_{l}}}{2\sqrt {2}(v_{0}^{2}-c_{l}^{2})^{1/4}(v_{0}^{2}-c_{r}^{2})}, \\ S_{ul,vr} = & \sqrt{\frac{v_{0}-c_{l}}{v_{0}+c_{l}}}\frac {(c_{r}^{2}-c_{l}^{2})\sqrt{\omega\xi_{l}}}{2\sqrt {2}(v_{0}^{2}-c_{l}^{2})^{1/4}(v_{0}^{2}-c_{r}^{2})}, \\ S_{3r,vr} = & \frac{\sqrt{v_{0}^{2}-c_{l}^{2}}+\sqrt {v_{0}^{2}-c_{r}^{2}}}{2(v_{0}^{2}-c_{l}^{2})^{1/4}(v_{0}^{2}-c_{r}^{2})^{1/4}}, \\ S_{4r,vr} = & \frac{\sqrt{v_{0}^{2}-c_{l}^{2}}-\sqrt {v_{0}^{2}-c_{r}^{2}}}{2(v_{0}^{2}-c_{l}^{2})^{1/4}(v_{0}^{2}-c_{r}^{2})^{1/4}}, \\ S_{vl,ur} = & \sqrt{\frac{v_{0}+c_{l}}{v_{0}-c_{l}}}\frac {(c_{l}^{2}-c_{r}^{2})\sqrt{\omega\xi_{l}}}{2\sqrt {2}(v_{0}^{2}-c_{l}^{2})^{1/4}(v_{0}^{2}-c_{r}^{2})}, \\ S_{ul,ur} = & \sqrt{\frac{v_{0}-c_{l}}{v_{0}+c_{l}}}\frac {(c_{r}^{2}-c_{l}^{2})\sqrt{\omega\xi_{l}}}{2\sqrt {2}(v_{0}^{2}-c_{l}^{2})^{1/4}(v_{0}^{2}-c_{r}^{2})}, \\ S_{3r,ur} = & \frac{\sqrt{v_{0}^{2}-c_{r}^{2}}-\sqrt {v_{0}^{2}-c_{l}^{2}}}{2(v_{0}^{2}-c_{l}^{2})^{1/4}(v_{0}^{2}-c_{r}^{2})^{1/4}}, \\ S_{4r,ur} = & \frac{\sqrt{v_{0}^{2}-c_{l}^{2}}+\sqrt {v_{0}^{2}-c_{r}^{2}}}{2(v_{0}^{2}-c_{l}^{2})^{1/4}(v_{0}^{2}-c_{r}^{2})^{1/4}}, \\ S_{vl,3l} = & \frac{c_{l}+c_{r}}{2\sqrt{c_{l}c_{r}}}, \\ S_{ul,3l} = & i\frac{c_{l}-c_{r}}{2\sqrt{c_{l}c_{r}}}, \\ S_{3r,3l} = & \frac {(v_{0}^{2}-c_{r}^{2})^{1/4}(c_{l}^{2}-c_{r}^{2})\sqrt{c_{l}\xi _{l}\omega}}{2\sqrt {2c_{r}}(c_{r}-v_{0})(v_{0}^{2}-c_{l}^{2})}, \\ S_{4r,3l} = & \frac {(v_{0}^{2}-c_{r}^{2})^{1/4}(c_{l}^{2}-c_{r}^{2})\sqrt{c_{l}\xi _{l}\omega}}{2\sqrt {2c_{r}}(c_{r}-v_{0})(v_{0}^{2}-c_{l}^{2})}, \\ S_{vl,4l} = & \frac{c_{l}-c_{r}}{2\sqrt{c_{l}c_{r}}}, \\ S_{ul,4l} = & i\frac{c_{l}+c_{r}}{2\sqrt{c_{l}c_{r}}}, \\ S_{3r,4l} = & \frac {(v_{0}^{2}-c_{r}^{2})^{1/4}(c_{l}^{2}-c_{r}^{2})\sqrt{c_{l}\xi _{l}\omega}}{2\sqrt {2c_{r}}(c_{r}+v_{0})(c_{l}^{2}-v_{0}^{2})}, \\ S_{4r,4l} = & i\frac {(v_{0}^{2}-c_{r}^{2})^{1/4}(c_{r}^{2}-c_{l}^{2})\sqrt{c_{l}\xi _{l}\omega}}{2\sqrt{2c_{r}}(c_{r}+v_{0})(c_{l}^{2}-v_{0}^{2})} . \end{aligned}$$
(9.126)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Balbinot, R., Carusotto, I., Fabbri, A., Mayoral, C., Recati, A. (2013). Understanding Hawking Radiation from Simple Models of Atomic Bose-Einstein Condensates. In: Faccio, D., Belgiorno, F., Cacciatori, S., Gorini, V., Liberati, S., Moschella, U. (eds) Analogue Gravity Phenomenology. Lecture Notes in Physics, vol 870. Springer, Cham. https://doi.org/10.1007/978-3-319-00266-8_9

Download citation

Publish with us

Policies and ethics