Skip to main content

Survey of Analogue Spacetimes

  • Chapter
Analogue Gravity Phenomenology

Part of the book series: Lecture Notes in Physics ((LNP,volume 870))

Abstract

Analogue spacetimes (and more boldly, analogue models both of and for gravity), have attracted significant and increasing attention over the last decade and a half. Perhaps the most straightforward physical example, which serves as a template for most of the others, is Bill Unruh’s model for a dumb hole,(mute black hole, acoustic black hole), wherein sound is dragged along by a moving fluid—and can even be trapped behind an acoustic horizon. This and related analogue models for curved spacetimes are useful in many ways: analogue spacetimes provide general relativists with extremely concrete physical models to help focus their thinking, and conversely the techniques of curved spacetime can sometimes help improve our understanding of condensed matter and/or optical systems by providing an unexpected and countervailing viewpoint. In this chapter, I shall provide a few simple examples of analogue spacetimes as general background for the rest of the contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordon, W.: Zur Lichtfortpflanzung nach der Relativitätstheorie. Ann. Phys. (Leipz.) 72, 421–456 (1923). doi:10.1002/andp.19233772202

    Article  ADS  MATH  Google Scholar 

  2. Unruh, W.G.: Experimental black hole evaporation. Phys. Rev. Lett. 46, 1351 (1981)

    Article  ADS  Google Scholar 

  3. Barceló, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Relativ. 8, 12 (2005). Updated as Living Rev. Relativ. 14, 3 (2011). gr-qc/0505065

    ADS  Google Scholar 

  4. Visser, M.: Acoustic propagation in fluids: an unexpected example of Lorentzian geometry. gr-qc/9311028

  5. Visser, M.: Acoustic black holes: horizons, ergospheres, and Hawking radiation. Class. Quantum Gravity 15, 1767 (1998). gr-qc/9712010

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Visser, M., Barceló, C., Liberati, S.: Analog models of and for gravity. Gen. Relativ. Gravit. 34, 1719 (2002). gr-qc/0111111

    Article  MATH  Google Scholar 

  7. Visser, M., Molina-París, C.: Acoustic geometry for general relativistic barotropic irrotational fluid flow. New J. Phys. 12, 095014 (2010). arXiv:1001.1310 [gr-qc]

    Article  ADS  Google Scholar 

  8. Baccetti, V., Martin–Moruno, P., Visser, M.: Gordon and Kerr–Schild ansätze in massive and bimetric gravity. arXiv:1206.4720v1 (2013)

  9. Tolman, R.C.: On thermodynamic equilibrium in a static Einstein universe. Proc. Natl. Acad. Sci. USA 17, 153–160 (1931)

    Article  ADS  Google Scholar 

  10. Robertson, H.P.: Relativistic cosmology. Rev. Mod. Phys. 5, 62–90 (1933)

    Article  ADS  Google Scholar 

  11. Tolman, R.C.: Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939)

    Article  ADS  Google Scholar 

  12. Niven, W.D. (ed.): The Scientific Papers of James Clerk Maxwell, 1890, p. 76. Dover, New York (2003)

    Google Scholar 

  13. Anonymous: Problems (3). Camb. Dublin Math. J. 8, 188 (1853)

    Google Scholar 

  14. Anonymous: Solutions of problems (prob. 3, vol. VIII. p. 188). Camb. Dublin Math. J. 9, 9–11 (1854)

    Google Scholar 

  15. Lüneburg, R.K.: In: Mathematical Theory of Optics, pp. 189–213. Brown University, Providence (1944)

    Google Scholar 

  16. Leonhardt, U.: Optical conformal mapping. Science 312, 1777–1780 (2006). doi:10.1126/science.1126493

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006). doi:10.1126/science.1125907

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Leonhardt, U., Philbin, T.: General relativity in electrical engineering. New J. Phys. 8, 247 (2006). cond-mat/0607418. doi:10.1088/1367-2630/8/10/247

    Article  ADS  Google Scholar 

  19. Leonhardt, U., Philbin, T.: Transformation optics and the geometry of light. Prog. Opt. 53, 69–152 (2009). arXiv:0805.4778

    Article  Google Scholar 

  20. Pendry, J.: Optics: all smoke and metamaterials. Nature 460, 579 (2009)

    Article  ADS  Google Scholar 

  21. Visser, M., Weinfurtner, S.E.C.: Vortex geometry for the equatorial slice of the Kerr black hole. Class. Quantum Gravity 22, 2493 (2005). gr-qc/0409014

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Berti, E., Cardoso, V., Lemos, J.P.S.: Quasinormal modes and classical wave propagation in analogue black holes. Phys. Rev. D70, 124006 (2004). gr-qc/0408099

    MathSciNet  ADS  Google Scholar 

  23. Lemos, J.P.S.: Rotating acoustic holes: quasinormal modes and tails, super-resonance, and sonic bombs and plants in the draining bathtub. In: Proceedings of the II Amazonian Symposium on Physics—Analogue Models of Gravity (in press)

    Google Scholar 

  24. Perez Bergliaffa, S.E., Hibberd, K., Stone, M., Visser, M.: Wave equation for sound in fluids with vorticity. Physica D 191, 121 (2004). cond-mat/0106255

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Jacobson, T., Kang, G.: Conformal invariance of black hole temperature. Class. Quantum Gravity 10, L201 (1993). gr-qc/9307002

    Article  MathSciNet  ADS  Google Scholar 

  26. Moncrief, V.: Stability of stationary, spherical accretion onto a Schwarzschild black hole. Astrophys. J. 235, 1038–1046 (1980)

    Article  ADS  Google Scholar 

  27. Babichev, E., Mukhanov, V., Vikman, A.: k-Essence, superluminal propagation, causality and emergent geometry. J. High Energy Phys. 0802, 101 (2008). arXiv:0708.0561 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  28. Fagnocchi, S., Finazzi, S., Liberati, S., Kormos, M., Trombettoni, A.: Relativistic Bose-Einstein condensates: a new system for analogue models of gravity. New J. Phys. 12, 095012 (2010). arXiv:1001.1044 [gr-qc]

    Article  ADS  Google Scholar 

  29. Garay, L.J., Anglin, J.R., Cirac, J.I., Zoller, P.: Black holes in Bose-Einstein condensates. Phys. Rev. Lett. 85, 4643 (2000). gr-qc/0002015

    Article  ADS  Google Scholar 

  30. Barceló, C., Liberati, S., Visser, M.: Analog gravity from Bose-Einstein condensates. Class. Quantum Gravity 18, 1137 (2001). gr-qc/0011026

    Article  ADS  MATH  Google Scholar 

  31. Barceló, C., Liberati, S., Visser, M.: Towards the observation of Hawking radiation in Bose-Einstein condensates. Int. J. Mod. Phys. A 18, 3735 (2003). gr-qc/0110036

    Article  ADS  MATH  Google Scholar 

  32. Barceló, C., Liberati, S., Visser, M.: Probing semiclassical analog gravity in Bose-Einstein condensates with widely tunable interactions. Phys. Rev. A 68, 053613 (2003). cond-mat/0307491

    Article  ADS  Google Scholar 

  33. Lahav, O., Itah, A., Blumkin, A., Gordon, C., Steinhauer, J.: Realization of a sonic black hole analogue in a Bose-Einstein condensate. Phys. Rev. Lett. 105, 240401 (2010). arXiv:0906.1337 [cond-mat.quant-gas]

    Article  ADS  Google Scholar 

  34. Jannes, G.: Emergent gravity: the BEC paradigm. arXiv:0907.2839 [gr-qc]

  35. Mayoral, C., Recati, A., Fabbri, A., Parentani, R., Balbinot, R., Carusotto, I.: Acoustic white holes in flowing atomic Bose-Einstein condensates. New J. Phys. 13, 025007 (2011). arXiv:1009.6196 [cond-mat.quant-gas]

    Article  ADS  Google Scholar 

  36. Balbinot, R., Carusotto, I., Fabbri, A., Mayoral, C., Recati, A.: Understanding Hawking radiation from simple BEC models (these proceedings)

    Google Scholar 

  37. Visser, M., Weinfurtner, S.: Massive Klein-Gordon equation from a BEC-based analogue spacetime. Phys. Rev. D 72, 044020 (2005). gr-qc/0506029

    Article  MathSciNet  ADS  Google Scholar 

  38. Visser, M., Weinfurtner, S.: Massive phonon modes from a BEC-based analog model. cond-mat/0409639

  39. Liberati, S., Visser, M., Weinfurtner, S.: Naturalness in emergent spacetime. Phys. Rev. Lett. 96, 151301 (2006). gr-qc/0512139

    Article  ADS  Google Scholar 

  40. Badulin, S.I., Pokazayev, K.V., Rozenberg, A.D.: A laboratory study of the transformation of regular gravity-capillary waves in inhomogeneous flows. Izv., Atmos. Ocean. Phys. 19, 782–787 (1983)

    Google Scholar 

  41. Weinfurtner, S., Tedford, E.W., Penrice, M.C.J., Unruh, W.G., Lawrence, G.A.: Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 106, 021302 (2011). arXiv:1008.1911 [gr-qc]

    Article  ADS  Google Scholar 

  42. Rousseaux, G., Mathis, C., Maissa, P., Philbin, T.G., Leonhardt, U.: Observation of negative phase velocity waves in a water tank: a classical analogue to the Hawking effect? New J. Phys. 10, 053015 (2008). arXiv:0711.4767 [gr-qc]

    Article  ADS  Google Scholar 

  43. Visser, M., Weinfurtner, S.: Analogue spacetimes: toy models for quantum gravity. arXiv:0712.0427 [gr-qc]

  44. Visser, M.: Emergent rainbow spacetimes: two pedagogical examples. In: Time & Matter, Lake Bled, Slovenia (2007). arXiv:0712.0810 [gr-qc]

  45. Rousseaux, G., Maissa, P., Mathis, C., Coullet, P., Philbin, T.G., Leonhardt, U.: Horizon effects with surface waves on moving water. New J. Phys. 12, 095018 (2010). arXiv:1004.5546 [gr-qc]

    Article  ADS  Google Scholar 

  46. Rousseaux, G.: The basics of water waves theory for analogue gravity (these proceedings). arXiv:1203.3018v1 [physics.flu-dyn]

  47. Boussinesq, J.: Théorie de l’intumescence liquide, applelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. C. R. Acad. Sci. 72, 755–759 (1871)

    MATH  Google Scholar 

  48. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl., Sér. II 17, 55–108 (1872)

    Google Scholar 

  49. Madsen, P.A., Schaffer, H.A.: Higher-order Boussinesq type equations for surface gravity waves: derivation and analysis. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 356, 3123–3184 (1998). See http://www.jtsor.org/stable/55084

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Schützhold, R., Unruh, W.G.: Gravity wave analogs of black holes. Phys. Rev. D 66, 044019 (2002). gr-qc/0205099

    Article  MathSciNet  ADS  Google Scholar 

  51. Unruh, W.G.: Irrotational, two-dimensional surface waves in fluids (these proceedings). arXiv:1205.6751 [gr-qc]

  52. Chaline, J., Jannes, G., Maissa, P., Rousseaux, G.: Some aspects of dispersive horizons: lessons from surface waves (these proceedings). arXiv:1203.2492 [physics.flu-dyn]

  53. Carusotto, I., Rousseaux, G.: The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogs (these proceedings). arXiv:1202.3494 [physics.class-ph]

  54. Jannes, G., Piquet, R., Maissa, P., Mathis, C., Rousseaux, G.: Experimental demonstration of the supersonic-subsonic bifurcation in the circular jump: a hydrodynamic white hole. Phys. Rev. E 83, 056312 (2011). arXiv:1010.1701 [physics.flu-dyn]

    Article  ADS  Google Scholar 

  55. Volovik, G.E.: The hydraulic jump as a white hole. JETP Lett. 82, 624 (2005). Pis’ma Zh. Eksp. Teor. Fiz. 82, 706 (2005). physics/0508215

    Article  ADS  Google Scholar 

  56. Philbin, T.G., Kuklewicz, C., Robertson, S., Hill, S., Konig, F., Leonhardt, U.: Fiber-optical analogue of the event horizon. Science 319, 1367–1370 (2008). arXiv:0711.4796 [gr-qc]

    Article  ADS  Google Scholar 

  57. Belgiorno, F., Cacciatori, S.L., Ortenzi, G., Sala, V.G., Faccio, D.: Quantum radiation from superluminal refractive-index perturbations. Phys. Rev. Lett. 104, 140403 (2010). arXiv:0910.3508 [quant-ph]

    Article  ADS  Google Scholar 

  58. Belgiorno, F., Cacciatori, S.L., Ortenzi, G., Rizzi, L., Gorini, V., Faccio, D.: Dielectric black holes induced by a refractive index perturbation and the Hawking effect. Phys. Rev. D 83, 024015 (2011). arXiv:1003.4150 [quant-ph]

    Article  ADS  Google Scholar 

  59. Cacciatori, S.L., Belgiorno, F., Gorini, V., Ortenzi, G., Rizzi, L., Sala, V.G., Faccio, D.: Space-time geometries and light trapping in travelling refractive index perturbations. New J. Phys. 12, 095021 (2010). arXiv:1006.1097 [physics.optics]

    Article  ADS  Google Scholar 

  60. Belgiorno, F., Cacciatori, S.L., Clerici, M., Gorini, V., Ortenzi, G., Rizzi, L., Rubino, E., Sala, V.G., et al.: Hawking radiation from ultrashort laser pulse filaments. arXiv:1009.4634 [gr-qc]

  61. Schützhold, R., Unruh, W.G.: Comment on: Hawking radiation from ultrashort laser pulse filaments. Phys. Rev. Lett. 107, 149401 (2011). arXiv:1012.2686 [quant-ph]

    Article  ADS  Google Scholar 

  62. Belgiorno, F., Cacciatori, S.L., Clerici, M., Gorini, V., Ortenzi, G., Rizzi, L., Rubino, E., Sala, V.G., et al.: Reply to “Comment on: Hawking radiation from ultrashort laser pulse filaments”. Phys. Rev. Lett. 107, 149402 (2011). arXiv:1012.5062 [quant-ph]

    Article  ADS  Google Scholar 

  63. Liberati, S., Prain, A., Visser, M.: Quantum vacuum radiation in optical glass. Phys. Rev. D (in press). arXiv:1111.0214 [gr-qc]

  64. Schützhold, R., Unruh, W.G.: Hawking radiation in an electromagnetic waveguide? Phys. Rev. Lett. 95, 031301 (2005)

    Article  ADS  Google Scholar 

  65. Cortijo, A., Vozmediano, M.A.H.: Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl. Phys. B 763, 293 (2007). Nucl. Phys. B 807, 659 (2009). cond-mat/0612374

    Article  ADS  MATH  Google Scholar 

  66. Vozmediano, M.A.H., Katsnelson, M.I., Guinea, F.: Gauge fields in graphene. Phys. Rep. 496, 109 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  67. Leonhardt, U., Piwnicki, P.: Relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett. 84, 822 (2000)

    Article  ADS  Google Scholar 

  68. Visser, M.: Comment on: relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett. 85, 5252 (2000). gr-qc/0002011

    Article  ADS  Google Scholar 

  69. Leonhardt, U., Piwnicki, P.: Reply to the comment on ‘Relativistic effects of light in moving media with extremely low group velocity’ by M. Visser. Phys. Rev. Lett. 85, 5253 (2000). gr-qc/0003016

    Article  ADS  Google Scholar 

  70. Leonhardt, U.: Space-time geometry of quantum dielectrics. physics/0001064

  71. Leonhardt, U.: A primer to slow light. gr-qc/0108085

  72. Volovik, G.E.: Superfluid analogies of cosmological phenomena. Phys. Rep. 351, 195 (2001). gr-qc/0005091

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. Jacobson, T.A., Volovik, G.E.: Event horizons and ergoregions in He-3. Phys. Rev. D 58, 064021 (1998)

    Article  ADS  Google Scholar 

  74. Giovanazzi, S.: Hawking radiation in sonic black holes. Phys. Rev. Lett. 94, 061302 (2005). physics/0411064

    Article  MathSciNet  ADS  Google Scholar 

  75. Giovanazzi, S.: Entanglement entropy and mutual information production rates in acoustic black holes. Phys. Rev. Lett. 106, 011302 (2011). arXiv:1101.3272 [cond-mat.other]

    Article  ADS  Google Scholar 

  76. Horstmann, B., Reznik, B., Fagnocchi, S., Cirac, J.I.: Hawking radiation from an acoustic black hole on an ion ring. Phys. Rev. Lett. 104, 250403 (2010). arXiv:0904.4801 [quant-ph]

    Article  ADS  Google Scholar 

  77. Liberati, S.: Lorentz breaking: effective field theory and observational tests (these proceedings). arXiv:1203.4105 [gr-qc]

  78. Volovik, G.E.: Topology of quantum vacuum (these proceedings). arXiv:1111.4627 [hep-ph]

  79. Jannes, G., Volovik, G.E.: The cosmological constant: a lesson from the effective gravity of topological Weyl media. arXiv:1108.5086 [gr-qc]

  80. Finazzi, S., Liberati, S., Sindoni, L.: The analogue cosmological constant in Bose-Einstein condensates: a lesson for quantum gravity. In: Proceedings of the II Amazonian Symposium on Physics—Analogue Models of Gravity (in press). arXiv:1204.3039 [gr-qc]

Download references

Acknowledgements

This research was supported by the Marsden Fund, and by a James Cook Research Fellowship, both administered by the Royal Society of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Visser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Visser, M. (2013). Survey of Analogue Spacetimes. In: Faccio, D., Belgiorno, F., Cacciatori, S., Gorini, V., Liberati, S., Moschella, U. (eds) Analogue Gravity Phenomenology. Lecture Notes in Physics, vol 870. Springer, Cham. https://doi.org/10.1007/978-3-319-00266-8_2

Download citation

Publish with us

Policies and ethics