Skip to main content

Astrophysical Black Holes: Evidence of a Horizon?

  • Chapter
Analogue Gravity Phenomenology

Part of the book series: Lecture Notes in Physics ((LNP,volume 870))

  • 2201 Accesses

Abstract

In this Lecture Note we first follow a short account of the history of the black hole hypothesis. We then review on the current status of the search for astrophysical black holes with particular attention to the black holes of stellar origin. Later, we highlight a series of observations that reveal the albeit indirect presence of supermassive black holes in galactic nuclei, with mention to forthcoming experiments aimed at testing directly the black hole hypothesis. We further focus on evidences of a black hole event horizon in cosmic sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The references have been limited to a minimum and are focussed on mentioning main key papers supplemented by specific reviews and some recent publications, which do include more extensive references.

  2. 2.

    Black holes can also carry a finite electric charge: they are described by the known Kerr-Newman metric which is the solution of the Einstein-Maxwell field equation in GR for a rotating, charged point mass. As any electric charge excess is shorted by opposite charges in the cosmic environment, charged black holes have no astrophysical relevance, in this Lecture Note.

  3. 3.

    We recall that degenerate particles of mass m e (i.e. electrons for white dwarfs) at a given density n have a distribution in the momentum space p which is flat up to the maximum, known as Fermi momentum, p F=(3h 3 n/8π)1/3, where h the Planck constant. Pressure in this fluid scales as \(P\propto n(p/m_{\mathrm{e}})p\propto np^{2}_{\mathrm{F}}\propto n^{5/3}\) when the particles are non-relativistic; for ultra-relativistic electrons, Pncp Fn 4/3.

  4. 4.

    These explosions are identified as Type Ia supernovae.

  5. 5.

    A radically different viewpoint was presented by Witten with the introduction of the strange star model. The idea of the strange star rests on the hypothesis that strange quark matter, composed by equal number of up, down and strange quarks, could be the absolute ground state of matter [20]. The simplest model of self-bound strange quark matter is the MIT bag model for which P=(ρc 2−4B)/3 where B is the Bag constant. Interestingly, strange stars exist only below a maximum mass of about 2.033M for B=56 MeV fm−3.

  6. 6.

    This technique reminiscent of echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. These echo mapping experiments yield sizes for the broad line-emitting region that have been studied in about three dozen AGNs. The dynamics of the line-emitting gas appears to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGN.

  7. 7.

    Physical collisions do not affect the lifetime of clusters made of black holes as light as 0.005M, due to their small sizes. For these light mini-black holes the evaporation time can also be made arbitrarily long, owing to the weakness of gravitational encounters, when m →0. These mini-black-holes would however not be of stellar origin, and no current astrophysical scenario predict their existence.

  8. 8.

    Recently, the evidence for a constant inner radius in the thermal state has been presented for a number of sources via plots showing that the bolometric luminosity of the thermal component is approximately proportional to \(T_{\mathrm{eff}}^{4}\). This indicates the stability of the radii of the inner annuli contributing most to the thermal emission.

  9. 9.

    The spin of a black hole changes sizably only if the black hole accretes a mass of the order of the black hole mass itself.

References

  1. Schwarzschild, K.: Preuss. Akad. Wiss. Berlin, Sitzber. 189 (1916)

    Google Scholar 

  2. Kruskal, M.D.: Phys. Rev. 119, 1743 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Kerr, R.: Phys. Rev. Lett. 11, 237 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Penrose, R.: Nuovo Cimento 1, 252 (1969)

    Google Scholar 

  5. Israel, W.: Phys. Rev. 164, 1776 (1967)

    Article  ADS  Google Scholar 

  6. Carter, B.: Phys. Rev. 174, 1559 (1968)

    Article  ADS  MATH  Google Scholar 

  7. Hawking, S.W.: Commun. Math. Phys. 33, 323 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  8. Robinson, D.C.: Phys. Rev. Lett. 34, 905 (1975)

    Article  ADS  Google Scholar 

  9. Hawking, S.W.: Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  10. Oppenheimer, J.R., Snyder, H.: Phys. Rev. 56, 455 (1939)

    Article  ADS  MATH  Google Scholar 

  11. Harrison, B.K., Thorne, K.S., Wakano, M., Wheeler, J.A.: Gravitation Theory and Gravitational Collapse. University of Chicago Press, Chicago (1965)

    Google Scholar 

  12. Chandrasekhar, S.: Astrophys. J. 74, 81 (1931)

    Article  ADS  MATH  Google Scholar 

  13. Oppenheimer, J.R., Volkoff, G.M.: Phys. Rev. 55, 734 (1939)

    Article  Google Scholar 

  14. Lattimer, J.M., Prakash, M.: Phys. Rep. 442, 109 (2007)

    Article  ADS  Google Scholar 

  15. Demorest, P.B., Pennucci, T., Ransom, S.M., Roberts, M.S.E., Hessels, J.W.T.: Nature 467, 7319 (2010)

    Article  Google Scholar 

  16. Jacoby, B.A., Hotan, A., Bailes, M., Ord, S., Kulkarni, S.R.: Astrophys. J. 629, L113 (2005)

    Article  ADS  Google Scholar 

  17. Cook, G., Shapiro, S.L., Teukolsky, S.: Astrophys. J. 424, 823 (1994)

    Article  ADS  Google Scholar 

  18. Cook, G., Shapiro, S.L., Teukolsky, S.: Astrophys. J. 423, L117 (1994)

    Article  ADS  Google Scholar 

  19. Rhoades, C.E., Ruffini, R.: Phys. Rev. Lett. 32, 324 (1974)

    Article  ADS  Google Scholar 

  20. Witten, W.: Phys. Rev. D 30, 272 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  21. Hewish, A., Bell, S.J., Pilkington, J.D., Scott, P.F., Collins, R.A.: Nature 217(5130), 709 (1968)

    Article  ADS  Google Scholar 

  22. Giacconi, R., Gursky, H., Paolini, F.R., Rossi, B.B.: Phys. Rev. Lett. 9, 439 (1962)

    Article  ADS  Google Scholar 

  23. Salpeter, E.: Astrophys. J. 140, 796 (1964)

    Article  ADS  Google Scholar 

  24. Zel’dovich, Ya., Novikov, I.D.: Sov. Phys. J. 9, 246 (1964)

    Google Scholar 

  25. Lynden-Bell, D., Rees, M.J.: Mon. Not. R. Astron. Soc. 152, 461 (1971)

    ADS  Google Scholar 

  26. Tauris, T.M., van den Heuvel, E.P.J.: In: Lewin, van der Klis (eds.) Compact Stellar X-Ray Sources. Cambridge Astrophysics Series, vol. 39. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  27. King, A.R.: In: Lewin, van der Klis (eds.) Compact Stellar X-Ray Sources. Cambridge Astrophysics Series, vol. 39. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  28. Ghosh, P.: Class. Quantum Gravity 25(5), 059001 (2008)

    Article  Google Scholar 

  29. Lorimer, D.R.: Living Rev. Relativ. 8, 7 (2008)

    ADS  Google Scholar 

  30. Shakura, N.I., Sunyaev, R.A.: Astron. Astrophys. 24, 337 (1973)

    ADS  Google Scholar 

  31. Lewin, W.H.G., van Paradijs, J., Taam, R.E.: Space Sci. Rev. 62, 223 (1993)

    Article  ADS  Google Scholar 

  32. Hulse, R.A., Taylor, J.H.: Astrophys. J. 195, L51 (1975)

    Article  ADS  Google Scholar 

  33. Burgay, M., et al.: Nature 426, 6966, 531 (2003)

    Article  Google Scholar 

  34. Lyne, A.G., et al.: Science 303, 5661, 1153 (2004)

    Article  Google Scholar 

  35. Kramer, M., Wex, N.: Class. Quantum Gravity 26(7), 073001 (2009)

    Article  ADS  Google Scholar 

  36. Mushotzky, A.: Adv. Space Res. 38(12), 2793 (2006)

    Article  ADS  Google Scholar 

  37. Fabbiano, G.: Annu. Rev. Astron. Astrophys. 44(1), 323 (2006)

    Article  ADS  Google Scholar 

  38. Kramer, M.: New horizons in time-domain astronomy. IAU Symp. 285, 147 (2012)

    ADS  Google Scholar 

  39. Ozel, F., Psaltis, D., Narayan, R., Villareal, S.A.: Astrophys. J. 757, 55 (2012)

    Article  ADS  Google Scholar 

  40. Ozel, F., Psaltis, D., Narayan, R., McClintock, J.E.: Astrophys. J. 725, 1918 (2010)

    Article  ADS  Google Scholar 

  41. Ozel, F., Psaltis Dimitrios, D., Ransom, R., Demorest, P., Alford, M.: Astrophys. J. 724, L199 (2010)

    Article  ADS  Google Scholar 

  42. Heger, A., Fryer, C.L., Woosley, S.E., Langer, N., Hartmann, D.H.: Astrophys. J. 591, 288 (2003)

    Article  ADS  Google Scholar 

  43. Mapelli, M., Ripamonti, E., Zampieri, L., Colpi, M., Bressan, A.: Mon. Not. R. Astron. Soc. 408, 234 (2010)

    Article  ADS  Google Scholar 

  44. Krolik, J.H.: Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment. Princeton University Press, Princeton (1999)

    Google Scholar 

  45. Begelman, M.C., Blandford, R.D., Rees, M.J.: Rev. Mod. Phys. 56, 255 (1984)

    Article  ADS  Google Scholar 

  46. Blandford, R.D., Znajek, R.L.: Mon. Not. R. Astron. Soc. 179, 433 (1977)

    ADS  Google Scholar 

  47. Blandford, R.D., Payne, R.: Mon. Not. R. Astron. Soc. 199, 883 (1982)

    ADS  MATH  Google Scholar 

  48. Peterson, B.M., Horne, K.: Astron. Nachr. 325, 248 (2004)

    Article  ADS  Google Scholar 

  49. Vestergaard, M., Fan, X.X., Tremonti, C.A., Osmer, P., Patrick, S., Richards, G.T.: Astrophys. J. 674, L1 (2008)

    Article  ADS  Google Scholar 

  50. Merloni, A., Heinz, S.: In: Keelbook, W. (ed.) Planets, Stars and Stellar Systems, vol. 6 (2012)

    Google Scholar 

  51. White, S.D.M., Rees, M.J.: Mon. Not. R. Astron. Soc. 183, 341 (1978)

    ADS  Google Scholar 

  52. Mo, H., van den Bosch, F.C., White, S.D.M.: Galaxy Formation and Evolution. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  53. Kormendy, J., Richstone, D.O.: Annu. Rev. Astron. Astrophys. 33, 581 (1995)

    Article  ADS  Google Scholar 

  54. Ferrarese, L., Ford, H.: Space Sci. Rev. 116, 523 (2005)

    Article  ADS  Google Scholar 

  55. Gultekin, K., et al.: Astrophys. J. 698, 198 (2009)

    Article  ADS  Google Scholar 

  56. Ferrarese, L., Merritt, D.: Astrophys. J. 539, 9 (2000)

    Article  ADS  Google Scholar 

  57. Gebhardt, K., et al.: Astrophys. J. 593, 13 (2000)

    Article  Google Scholar 

  58. Magorrian, J., et al.: Astron. J. 115, 2285 (1998)

    Article  ADS  Google Scholar 

  59. Silk, J., Rees, M.J.: Astron. Astrophys. 331, 1 (1998)

    ADS  Google Scholar 

  60. King, A.R.: Astrophys. J. 596, 27 (2003)

    Article  ADS  Google Scholar 

  61. Di Matteo, T., Springel, V., Hernquist, L.: Nature 433, 604 (2005)

    Article  ADS  Google Scholar 

  62. Marconi, A., Risaliti, G., Gilli, R., Hunt, L.K., Maiolino, R., Salvati, M.: Mon. Not. R. Astron. Soc. 351, 169 (2004)

    Article  ADS  Google Scholar 

  63. Volonteri, M.: Astron. Astrophys. Rev. 18, 279 (2010)

    Article  ADS  Google Scholar 

  64. Tegmark, M., Silk, J., Rees, M.J., Blanchard, A., Abel, T., Palla, F.: Astrophys. J. 474, 1 (1997)

    Article  ADS  Google Scholar 

  65. Abel, T., Bryan, G.L., Norman, M.L.: Science 295, 93 (2002)

    Article  ADS  Google Scholar 

  66. Omukai, K., Palla, F.: Astrophys. J. 561, 55 (2001)

    Article  ADS  Google Scholar 

  67. Begelman, M.C., Volonteri, M., Rees, M.J.: Mon. Not. R. Astron. Soc. 370, 289 (2006)

    Article  ADS  Google Scholar 

  68. Devecchi, B., Volonteri, M., Rossi, E., Colpi, M., Portegies Zwart, S.: Mon. Not. R. Astron. Soc. 412, 1465 (2012)

    Article  ADS  Google Scholar 

  69. Miyoshi, M., et al.: Nature 373, 6510, 127 (1995)

    Article  Google Scholar 

  70. Siopsis, C., et al.: Astrophys. J. 693, 946 (2009)

    Article  ADS  Google Scholar 

  71. Maoz, E.: Astrophys. J. 494, L181 (1998)

    Article  ADS  Google Scholar 

  72. Ghez, A.M., et al.: Astrophys. J. 689, 1044 (2008)

    Article  ADS  Google Scholar 

  73. Gillessen, S., et al.: Astrophys. J. 692, 1075 (2009)

    Article  ADS  Google Scholar 

  74. Colpi, M., Shapiro, S.L., Wasserman, I.: Phys. Rev. Lett. 57, 2485 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  75. Kulkarni, A.K., et al.: Mon. Not. R. Astron. Soc. 414, 1183 (2011)

    Article  ADS  Google Scholar 

  76. Novikov, I.D., Thorne, K.S.: In: Dewiit, C. (ed.) Astrophysics of Black Holes, p. 343 (1973)

    Google Scholar 

  77. McClintock, J.E., et al.: Class. Quantum Gravity 28, 114009 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  78. Penna, R.F., SaDowski, A., McKinney, J.C.: Mon. Not. R. Astron. Soc. 420, 684 (2011)

    Article  ADS  Google Scholar 

  79. Fabian, A.C., Iwasawa, K.K., Reynolds, C.S., Young, A.J.: Publ. Astron. Soc. Pac. 112, 1145 (2000)

    Article  ADS  Google Scholar 

  80. Reynolds, C.S., Nowak, M.A.: Phys. Rep. 377, 389 (2003)

    Article  ADS  Google Scholar 

  81. Miller, J.M.: Annu. Rev. Astron. Astrophys. 45, 441 (2007)

    Article  ADS  Google Scholar 

  82. Fender, R.P., Gallo, E., Russell, D.: Mon. Not. R. Astron. Soc. 406, 1425 (2010)

    ADS  Google Scholar 

  83. Narayan, R., McClintock, J.E.: New Astron. Rev. 51, 733 (2008)

    Article  ADS  Google Scholar 

  84. Amaro Seoane, P., et al.: Living Rev. Relativ. (2012, in press)

    Google Scholar 

  85. Amaro Seoane, P., et al.: Class. Quantum Gravity 29(12), 24016 (2012)

    Article  ADS  Google Scholar 

  86. Sopuerta, C.F.: Gravit. Wave Not. 4, 3 (2010)

    Google Scholar 

  87. Babak, S., et al.: Class. Quantum Gravity 28, 114001 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  88. Kesden, M., et al.: Phys. Rev. D 71, 044015 (2005)

    Article  ADS  Google Scholar 

  89. Pani, P., Cardoso, V.: Phys. Rev. D 79, 084031 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  90. Gair, J.R., Li, C., Mandel, I.: Phys. Rev. 77, 024035 (2008)

    ADS  Google Scholar 

  91. Barausse, E., Rezzolla, L., Petroff, D., Ansorg, M.: Phys. Rev. 75, 064026 (2007)

    MathSciNet  Google Scholar 

  92. Kocsis, B., Yunes, N., Loeb, A.: Phys. Rev. 84, 024032 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Colpi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colpi, M. (2013). Astrophysical Black Holes: Evidence of a Horizon?. In: Faccio, D., Belgiorno, F., Cacciatori, S., Gorini, V., Liberati, S., Moschella, U. (eds) Analogue Gravity Phenomenology. Lecture Notes in Physics, vol 870. Springer, Cham. https://doi.org/10.1007/978-3-319-00266-8_16

Download citation

Publish with us

Policies and ethics