Skip to main content

Field Testing DTAC, Methodology and Results

  • Chapter
  • First Online:
The Future of Thermal Comfort in an Energy- Constrained World

Part of the book series: Springer Theses ((Springer Theses))

  • 1437 Accesses

Abstract

The Ductless Task Air-Conditioning (DTAC) system was developed for supplementary personal cooling to office occupants. DTAC utilised thermoelectric (peltier) modules for heat exchange into a phase change material (PCM) as heat sink, allowing workspaces to be air-conditioned with no installation. The process of prototyping and optimising this unit is covered at length and in detail in Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimoto, T., Tanabe, S., Yanai, T., & Sasaki, M. (2010). Thermal comfort and productivity - Evaluation of workplace environment in a task conditioned office. Building and Environment, 45(1), 45–50.

    Google Scholar 

  • Amai, H., Tanabe, S., Akimoto, T., & Genma, T. (2007). Thermal sensation and comfort with different task conditioning systems. Building and Environment, 42(12), 3955–3964.

    Google Scholar 

  • ASHRAE. (2004). Standard 55: Thermal Environmental Conditions for Human Occupancy.

    Google Scholar 

  • Bedford, T. (1936). The warmth factor in comfort at work: a physiological study of heating and ventilation. London: H. M Stationery off.

    Google Scholar 

  • Bauman, F., Baughman, A., Carter, G., & Arens, E. (1997). A Field Study of PEM (Personal Environmental Module) Performance in Bank of America’s San Francisco Office Buildings. UC Berkeley report submitted to Johnson Controls World Services, Inc.

    Google Scholar 

  • Broad, E. (1997). The effect of heat on performance in wheelchair shooters (Masters Thesis). University of Canberra, Australia.

    Google Scholar 

  • Cabanac, M. (1995). Human selective brain cooling. Austin: R G Landes Co.

    Google Scholar 

  • Charry, J. M., & Kavet, R. I. (1987). Air Ions: Physical and Biological Aspects (1st ed.). CRC Press.

    Google Scholar 

  • Fairclough, S. H., & Houston, K. (2004). A metabolic measure of mental effort. Biological Psychology, 66(2), 177–190.

    Google Scholar 

  • Gagge, A. P., Fobelets, A. P., & Berglund, L. G. (1986). A standard predictive index of human response to the thermal environment.

    Google Scholar 

  • Hancock, P. A. (1986). Sustained attention under thermal stress. Psychological Bulletin, 99(2), 263–281.

    Google Scholar 

  • Hedge, A., & Collins, M. D. (1987). Do negative air ions affect human mood and performance? Annals of Occupational Hygiene, 31(3), 285 –290.

    Google Scholar 

  • Humphreys, M. A. (1975). Field studies of thermal comfort compared and applied (p. CP76/75 1–30). Presented at the Symposium on Physiological requirements of the microclimate, Prague: Building Research Establishment.

    Google Scholar 

  • Humphreys, M. A. (1977). The optimum diameter for a globe thermometer for use indoors. Annals of Occupational Hygiene, 20(2), 135–140.

    Article  Google Scholar 

  • Humphreys, M. A., & Nicol, J. F. (2007). Self-Assessed Productivity and the Office Environment: Monthly Surveys in Five European Countries. ASHRAE Transactions, 113, 606–616.

    Google Scholar 

  • Incropera, F. P., & DeWitt, D. P. (2007). Fundamentals of heat and mass transfer. London: Wiley.

    Google Scholar 

  • ISO. (2005). ISO 7730 Ergonomics of the thermal environment—analytical determination and interpretation of thermal comfort using calculation of the PMVand PPD indices and local thermal comfort criteria.

    Google Scholar 

  • Kaczmarczyk, J., Melikov, A., & Fanger, P. O. (2004). Human response to personalized ventilation and mixing ventilation. Indoor Air, 14(s8), 17–29.

    Google Scholar 

  • Kaczmarczyk, J., Melikov, A., & Sliva, D. (2010). Effect of warm air supplied facially on occupants’ comfort. Building and Environment, 45(4), 848–855.

    Google Scholar 

  • Kroemer, K. H. E., Kroemer, H. J., & Kroemer-Elbert, K. E. (1997). Engineering Physiology: Bases of Human Factors Engineering/Ergonomics. Springer.

    Google Scholar 

  • LaDou, J. (1982). Health Effects of Shift Work. Western Journal of Medicine, 137(6), 525–530.

    Google Scholar 

  • Manton, J. G., & Hendy, K. C. (1988). Thermal stress in RAN Sea King helicopter operations. Melbourne: Department of Defence, Defence Science and Technology Organisation, Aeronautical Research Laboratory.

    Google Scholar 

  • Post, N. M. (1993). Smart buildings make good sense. Engineering News Record, (May 17).

    Google Scholar 

  • Sapolsky, R. M. (1990). Why You Feel Crummy When You’re Sick. Discover, 11(7), 66.

    Google Scholar 

  • Schiavon, S. (2009). Energy Saving With Personalized Ventilation And Cooling Fan (PhD Thesis). University of Padua, Italy.

    Google Scholar 

  • Schiller, G. E. (1990). A comparison of measured and predicted comfort in office buildings. ASHRAE Transactions, 96(1), 609–622.

    Google Scholar 

  • Tanabe, S., & Nishihara, N. (2004). Productivity and fatigue. Indoor Air, 14(s7), 126–133.

    Google Scholar 

  • Van Hoof, J. (2008). Air-conditioned deployable force infrastructure as a strategy to combat sleep deprivation among troops in hot countries. Building Services Engineering Research & Technology, 29(4), 327–339.

    Google Scholar 

  • Wargocki, P., Wyon, D. P., Baik, Y. K., Clausen, G., & Fanger, P. O. (1999). Perceived Air Quality, Sick Building Syndrome (SBS) Symptoms and Productivity in an Office with Two Different Pollution Loads. Indoor Air, 9(3), 165–179.

    Google Scholar 

  • Whitaker, S. (1972). Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AChE Journal, 18(2), 361–371.

    Article  Google Scholar 

  • Zhang, H. (2003). Human thermal sensation and comfort in transient and non-uniform thermal environments (PhD Thesis). University of California, Berkeley.

    Google Scholar 

  • Zhang, H., Arens, E., Kim, D., Buchberger, E., Bauman, F., & Huizenga, C. (2010). Comfort, perceived air quality, and work performance in a low-power task–ambient conditioning system. Building and Environment, 45(1), 29–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Law .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Law, T. (2013). Field Testing DTAC, Methodology and Results. In: The Future of Thermal Comfort in an Energy- Constrained World. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00149-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00149-4_10

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00148-7

  • Online ISBN: 978-3-319-00149-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics