Skip to main content

Ultrafast Optical Control of Hole Spin Qubits: Suppressed Nuclear Feedback Effects

  • Chapter
  • First Online:
Towards Solid-State Quantum Repeaters

Part of the book series: Springer Theses ((Springer Theses))

  • 769 Accesses

Abstract

The strong contact hyperfine interaction between a single electron and the nuclear spins in a quantum dot [1–5] represents a severe limitation on its use as a qubit, as we discussed in Sect. 3.3.1. In particular, it results in non-linear, non-Markovian dynamics of the electron-nuclear system [6–9], making the use of the Larmor-precession as a single qubit gate cumbersome. While dynamical decoupling, in essence an extension of the simple spin echo presented in Sect. 3.3.2 to multiple refocusing pulses, could be used to decouple the effects of the nuclear spin bath [10–14], avoiding the contact hyperfine interaction altogether would be a much simpler solution. For some materials, this could be achieved by careful isotopic engineering: examples for group-IV and II–VI materials can be found in Refs. [15–19]. However, In, Ga and As do not possess any spin-0 isotopes, making this approach impossible for the self-assembled quantum dots used in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is true to first order: this term can give rise to spin flips in the x-direction (we can rewrite it in terms of lowering and raising operators along x), though these will be energetically forbidden and therefore only contribute to higher order. We refer to any of the theoretical descriptions of the full central-spin problem for details, e.g. Refs. [1, 4, 26].

  2. 2.

    As opposed to the δ-doping devices, where it would in principle be possible for a single, spurious electron to be present inside the quantum dot, which cannot be distinguished from a single hole as the optical signatures are the same.

References

  1. W. A. Coish and D. Loss. Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics. Phys. Rev. B, 70:195340, 2004.

    Article  ADS  Google Scholar 

  2. J. R. Petta et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 309:2180, 2005.

    Article  ADS  Google Scholar 

  3. W. Yao, R.-B. Liu, and L. J. Sham. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Phys. Rev. B, 74:195301, 2006.

    Article  ADS  Google Scholar 

  4. W. M. Witzel and S. Das Sarma. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment. Phys. Rev. B, 74:035322, 2006.

    Article  ADS  Google Scholar 

  5. D. Press, K. De Greve, P. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto. Ultrafast optical spin echo in a single quantum dot. Nat. Photonics, 4:367, 2010.

    Article  ADS  Google Scholar 

  6. I. T. Vink et al. Locking electron spins into magnetic resonance by electron–nuclear feedback. Nat. Phys., 5:764–768, 2009.

    Article  Google Scholar 

  7. C. Latta et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nat. Phys., 5:758, 2009.

    Article  Google Scholar 

  8. X. Xu et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature, 459(4):1105, 2009.

    Google Scholar 

  9. T. D. Ladd, D. Press, K. De Greve, P. McMahon, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto. Pulsed nuclear pumping and spin diffusion in a single charged quantum dot. Phys. Rev. Lett., 105:107401, 2010.

    Article  ADS  Google Scholar 

  10. L. Viola and S. Lloyd. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A, 58:2733–2744, 1998.

    Article  MathSciNet  ADS  Google Scholar 

  11. M.J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger. Optimized dynamical decoupling in a model quantum memory. Nature, 458:996, 2009.

    Article  ADS  Google Scholar 

  12. J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu. Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature, 461:1265, 2009.

    Article  ADS  Google Scholar 

  13. G. de Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science, 330(6000):60, 2010.

    Google Scholar 

  14. H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, and A. Yacoby. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nat. Phys., 7:109, 2010.

    Article  Google Scholar 

  15. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien. Quantum computers. Nature, 464:45, 2010.

    Article  ADS  Google Scholar 

  16. G. Balasubramanian et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater., 8:383, 2008.

    Article  ADS  Google Scholar 

  17. B. Kane. A silicon-based nuclear spin quantum computer. Nature, 393:133–137, 1998.

    Article  ADS  Google Scholar 

  18. M. G. Borselli, R. S. Ross, A. A. Kiselev, E. T. Croke, K. S. Holabird, P. W. Deelman, L. D. Warren, I. Alvarado-Rodriguez, I. Milosavljevic, F. C. Ku, W. S. Wong, A. E. Schmitz, M. Sokolich, M. F. Gyure, and A. T. Hunter. Measurement of valley splitting in high-symmetry Si/SiGe quantum dots. Appl. Phys. Lett., 98:123118, 2011.

    Article  ADS  Google Scholar 

  19. K. De Greve, S. M. Clark, D. Sleiter, K. Sanaka, T. D. Ladd, M. Panfilova, A. Pawlis, K. Lischka, and Y. Yamamoto. Photon antibunching and magnetospectroscopy of a single fluorine donor in ZnSe. Appl. Phys. Lett., 97:241913, 2010.

    Article  ADS  Google Scholar 

  20. D. V. Bulaev and D. Loss. Spin decoherence and relaxation of holes in a quantum dot. Phys. Rev. Lett., 95:076805, 2005.

    Article  ADS  Google Scholar 

  21. J. Fischer, W. A. Coish, D. V. Bulaev, and D. Loss. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B, 78:155329, 2008.

    Article  ADS  Google Scholar 

  22. B. D. Gerardot et al. Optical pumping of a single hole spin in a quantum dot. Nature, 451:441, 2008.

    Article  ADS  Google Scholar 

  23. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton. A coherent single-hole spin in a semiconductor. Science, 325(5936):70–72, 2009.

    Article  ADS  Google Scholar 

  24. P. Fellahi, S. T. Yilmaz, and A. Imamoglu. Measurement of a Heavy-Hole Hyperfine Interaction in InGaAs Quantum Dots Using Resonance Fluorescence. Phys. Rev. Lett., 105:257402, 2010.

    Article  ADS  Google Scholar 

  25. E. A. Chekhovich, A. B. Krysa, M. S. Skolnick, and A. I. Tartakovskii. Direct measurement of the hole-nuclear spin interaction in single quantum dots. Phys. Rev. Lett., 106:027402, 2010.

    Article  ADS  Google Scholar 

  26. R.-B. Liu, W. Yao, and L. J. Sham. Control of electron spin decoherence caused by electron-nuclear spin dynamics in a quantum dot. New J. Phys., 9:226, 2007.

    Article  ADS  Google Scholar 

  27. D. Sleiter and W. F. Brinkman. Using holes in GaAs as qubits: An estimate of the Rabi frequency in the presence of an external rf field. Phys. Rev. B, 74:153312, 2006.

    Article  ADS  Google Scholar 

  28. K. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov, and L. M. K. Vandersypen. Coherent Control of a Single Electron Spin with Electric Fields. Science, 318:1430, 2007.

    Article  ADS  Google Scholar 

  29. S. Nadj-Perge, S. M. Frolov, E. P. A. M. Bakkers, and L. P. Kouwenhoven. Spin–orbit qubit in a semiconductor nanowire. Nature, 468:1084–1087, 2010.

    Article  ADS  Google Scholar 

  30. K. De Greve, P. L. McMahon, D. Press, T. D. Ladd, D. Bisping, C. Schneider, M. Kamp, L. Worschech, S. Höfling, A. Forchel, and Y. Yamamoto. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat. Phys., 7:872, 2011.

    Article  Google Scholar 

  31. R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W Schoenfeld, and P. M. Petroff. Optical emission from a charge-tunable quantum ring. Nature, 405:926, 2000.

    Google Scholar 

  32. S. E. Economou, L. J. Sham, Y. Wu, and D. G. Steel. Proposal for optical U(1) rotations of electron spin trapped in a quantum dot. Phys. Rev. B, 74:205415, 2006.

    Article  ADS  Google Scholar 

  33. S. M. Clark, K-M. C. Fu, T. D. Ladd, and Y. Yamamoto. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses. Phys. Rev. Lett., 99:040501, 2007.

    Google Scholar 

  34. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.

    Google Scholar 

  35. B. Eble, C. Testelin, P. Desfonds, F. Bernardot, A. Balocchi, T. Amand, A. Miard, A. Lemaitre, X. Marie, and M. Chamarro. Hole–Nuclear spin interaction in quantum dots. Phys. Rev. Lett., 102:146601, 2009.

    Article  ADS  Google Scholar 

  36. C. Testelin, F. Bernardot, B. Eble, and M. Chamarro. Hole–spin dephasing time associated with hyperfine interaction in quantum dots. Phys. Rev. B, 79:195440, 2009.

    Article  ADS  Google Scholar 

  37. J. Fischer and D. Loss. Hybridization and Spin Decoherence in Heavy-Hole Quantum Dots. Phys. Rev. Lett., 105:266603, 2010.

    Article  ADS  Google Scholar 

  38. Y. G. Semenov, K. N. Borysenko, and K. W. Kim. Spin-phase relaxation of two-dimensional holes localized in a fluctuating potential. Phys. Rev. B, 66:113302, 2002.

    Article  ADS  Google Scholar 

  39. M. Syperek, D. R. Yakovlev, A. Greilich, J. Misiewicz, M. Bayer, D. Reuter, and A. D. Wieck. Spin coherence of holes in GaAs/(Al,Ga)As quantum wells. Phys. Rev. Lett., 99:187401, 2007.

    Article  ADS  Google Scholar 

  40. D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss. Observation of extremely slow hole spin relaxation in self-assembled quantum dots. Phys. Rev. B, 76:241306(R), 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

De Greve, K. (2013). Ultrafast Optical Control of Hole Spin Qubits: Suppressed Nuclear Feedback Effects. In: Towards Solid-State Quantum Repeaters. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00074-9_6

Download citation

Publish with us

Policies and ethics