Skip to main content

Energetic Electron Generation and Transport in Intense Laser-Solid Interactions

  • Chapter
  • First Online:
Laser-Plasma Interactions and Applications

Part of the book series: Scottish Graduate Series ((SGS))

  • 3687 Accesses

Abstract

In the interaction of a power laser pulse with a dense target a significant fraction of the laser pulse energy is absorbed to produce an intense beam of energetic (MeV) electrons. The physics of the generation and transport of this large current (multi-mega-Ampere) of fast electrons within the target is of fundamental importance to many topics in high intensity laser-solid interactions, including ion and radiation source development, warm dense matter physics and advanced schemes for inertial fusion energy. A review of the underlying physics governing energetic electron generation and transport in solids is given, together with recent examples of progress in this field of research. Prospects for controlling the transport of energetic electrons are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.C. Wilks, A.B. Langdon, T.E. Cowan et al., Phys. Plasmas 8, 542 (2001)

    Article  ADS  Google Scholar 

  2. C. Reich, P. Gibbon, I. Uschmann, E. Förster, Phys. Rev. Lett. 84, 4846 (2000)

    Article  ADS  Google Scholar 

  3. P. Patel, A.J. Mackinnon, M. Key et al., Phys. Rev. Lett. 91, 125004 (2003)

    Article  ADS  Google Scholar 

  4. M. Koenig, A. Benuzzi-Mounaix, A. Ravasio et al., Plasma Phys. Contr. F. 47, B441 (2005)

    Article  Google Scholar 

  5. M. Tabak, J. Hammer, M.E. Glinsky et al., Phys. Plasmas 1, 1626 (1994)

    Article  ADS  Google Scholar 

  6. W.L. Kruer, K. Estabrook, Phys. Fluids 28, 430 (1985)

    Article  ADS  Google Scholar 

  7. P. Gibbon, Phys. Rev. Lett. 73, 664 (1994)

    Article  ADS  Google Scholar 

  8. L.M. Chen, J. Zhang, Q.L. Dong et al., Phys. Plasmas 8, 2925 (2001)

    Article  ADS  Google Scholar 

  9. F. Jüttner, Annalen der Physik 339, 856 (1911)

    Article  ADS  Google Scholar 

  10. J.R. Davies, Plasma Phys. Contr. F. 51, 014006 (2009)

    Article  ADS  Google Scholar 

  11. J. Myatt, W. Theobald, J.A. Delettrez et al., Phys. Plasmas 14, 056301 (2007)

    Article  ADS  Google Scholar 

  12. P.M. Nilson, W. Theobald, J. Myatt et al., Phys. Rev. E 79, 016406 (2009)

    Article  ADS  Google Scholar 

  13. C.D. Chen, P.K. Patel, D.S. Hey et al., Phys. Plasmas 16, 082705 (2009)

    Article  ADS  Google Scholar 

  14. S.C. Wilks, W. Kruer, M. Tabak, A. Langdon, Phys. Rev. Lett. 69, 1383 (1992)

    Article  ADS  Google Scholar 

  15. P. McKenna, D.C. Carroll, O. Lundh et al., Laser Part. Beams 26, 591 (2008)

    Article  Google Scholar 

  16. H. Alfvén, Phys. Rev. 55, 425 (1939)

    Article  ADS  MATH  Google Scholar 

  17. A.R. Bell, J.R. Davies, S. Guerin, H. Ruhl, Plasma Phys. Contr. F. 39, 653 (1997)

    Article  ADS  Google Scholar 

  18. J.R. Davies, J.S. Green, P.A. Norreys, Plasma Phys. Contr. F. 48, 1181 (2006)

    Article  Google Scholar 

  19. P.A. Norreys, J.S. Green, J.R. Davies et al., Plasma Phys. Contr. F. 48, L11 (2006)

    Article  ADS  Google Scholar 

  20. A.R. Bell, R.J. Kingham, Phys. Rev. Lett. 91, 035003 (2003)

    Article  ADS  Google Scholar 

  21. X.H. Yuan, A.P.L. Robinson, M.N. Quinn et al., New J Phys. 12, 063018 (2010)

    Article  Google Scholar 

  22. A.P.L. Robinson, M. Sherlock, Phys. Plasmas 14, 083105 (2007)

    Article  ADS  Google Scholar 

  23. S. Kar, A.P.L. Robinson, D.C. Carroll et al., Phys. Rev. Lett. 102, 055001 (2009)

    Article  ADS  Google Scholar 

  24. B. Ramakrishna, S. Kar, A.P.L. Robinson et al., Phys. Rev. Lett. 105, 135001 (2010)

    Article  ADS  Google Scholar 

  25. A.P.L. Robinson, M.H. Key, M. Tabak, Phys. Rev. Lett. 108, 125004 (2012)

    Article  ADS  Google Scholar 

  26. R.H.H. Scott, C. Beaucourt, H.-P. Schlenvoigt et al., Phys. Rev. Lett. 109, 015001 (2012); arXiv:1012.2029v2

    Google Scholar 

  27. R. Jung, J. Osterholz, K. Löwenbrück et al., Phys. Rev. Lett. 94, 195001 (2005)

    Article  ADS  Google Scholar 

  28. L. Gremillet, G. Bonnaud, F. Amiranoff, Phys. Plasmas 9, 941 (2002)

    Article  ADS  Google Scholar 

  29. S.I. Krasheninnikov, A.V. Kim, B.K. Frolov, R. Stephens, Phys. Plasmas 12, 073105 (2005)

    Article  ADS  Google Scholar 

  30. A. Debayle, V.T. Tikhonchuk, Phys. Rev. E 78, 066404 (2008)

    Article  ADS  Google Scholar 

  31. M. Storm, A. Solodov, J. Myatt et al., Phys. Rev. Lett. 102, 23500 (2009)

    Article  Google Scholar 

  32. M.N. Quinn, D.C. Carroll, X.H. Yuan et al., Plasma Phys. Contr. F. 53, 124012 (2011)

    Article  ADS  Google Scholar 

  33. P. McKenna, A.P.L. Robinson, D. Neely et al., Phys. Rev. Lett. 106, 185004 (2011)

    Article  ADS  Google Scholar 

  34. Y. Sentoku, T.E. Cowan, A.J. Kemp, H. Ruhl, Phys. Plasmas 10, 2009 (2003)

    Article  ADS  Google Scholar 

  35. W. Theobald, K. Akli, R. Clarke et al., Phys. Plasmas 13, 043102 (2006)

    Article  ADS  Google Scholar 

  36. H.S. Park, D.M. Chambers, H.K. Chung et al., Phys. Plasmas 13, 056309 (2006)

    Article  ADS  Google Scholar 

  37. P.M. Nilson, W. Theobald, J. Myatt et al., Phys. Plasmas 15, 056308 (2008)

    Article  ADS  Google Scholar 

  38. A. Mackinnon, Y. Sentoku, P.K. Patel et al., Phys. Rev. Lett. 88, 215006 (2002)

    Article  ADS  Google Scholar 

  39. M.N. Quinn, X.H. Yuan, X.X. Lin et al., Plasma Phys. Contr. F. 53, 025007 (2011)

    Article  ADS  Google Scholar 

  40. P. McKenna, D.C. Carroll, R.J. Clarke et al., Phys. Rev. Lett. 98, 145001 (2007)

    Article  ADS  Google Scholar 

  41. S. Buffechoux, J. Psikal, M. Nakatsutsumi et al., Phys. Rev. Lett. 105, 15005 (2010)

    Article  ADS  Google Scholar 

  42. O. Tresca, D.C. Carroll, X.H. Yuan et al., Plasma Phys. Contr. F. 53, 105008 (2011)

    Article  ADS  Google Scholar 

  43. M. Burza, A. Gonoskov, G. Genould et al., New J. Phys. 13, 013030 (2011)

    Article  ADS  Google Scholar 

  44. S. Kar, K. Markey, M. Borghesi et al., Phys. Rev. Lett. 106, 225003 (2011)

    Article  ADS  Google Scholar 

  45. T. Nakamura, S. Kato, H. Nagatomo, K. Mima, Phys. Rev. Lett. 93, 265002 (2004)

    Article  ADS  Google Scholar 

  46. Y.T. Li, X.H. Yuan, M. Xu et al., Phys. Rev. Lett. 96, 2 (2006)

    Google Scholar 

  47. J. Psikal, V.T. Tikhonchuk, J. Limpouch, O. Klimo, Phys. Plasmas 17, 013102 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Paul McKenna gratefully acknowledges the principal contributions made by past and present members of his research group to many of the example experimental results presented in this chapter, together with collaborators from the Central Laser Facility, Queen’s University Belfast, Imperial College London, the University of Lund, GSI-Darmstadt, Sandia National Laboratories and the Chinese Academy of Sciences in Beijing. The ‘structured collimator’ work was led by collaborators at the Central Laser Facility (theory) and Queen’s University Belfast (experiment).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul McKenna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McKenna, P., Quinn, M.N. (2013). Energetic Electron Generation and Transport in Intense Laser-Solid Interactions. In: McKenna, P., Neely, D., Bingham, R., Jaroszynski, D. (eds) Laser-Plasma Interactions and Applications. Scottish Graduate Series. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00038-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00038-1_5

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00037-4

  • Online ISBN: 978-3-319-00038-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics