Skip to main content

Understanding the Iron Age Economy: Sustainability of Agricultural Practices under Stable Population Growth

  • Chapter
  • First Online:
Agent-based Modeling and Simulation in Archaeology

Abstract

Some of the most significant settlements of late Iron Age Europe were founded in agriculturally marginal landscapes. The specific locations caused their food production potential to be regarded usually as deficit in terms of sustainability. Such notion, however, can be re-examined with help of new methodological tools. In order to capture the dynamics of the agro-pastoral economy processes in recurrent year-to-year cycles, this chapter exploits the objective advantages and limits of coupled GIS environmental and agent-based social modelling approaches. Three consecutive models are presented—the population dynamics in The Population Model, and the sustainability of the land-use strategies in The Crop Production Model and The Field Allocation Model. Models are firmly based on authentic archaeological and environmental record with the region around long-term investigated oppidum of Staré Hradisko (Czech Republic) used as the case study. Results obtained with the simulation demonstrate limits of the sustainable economy practiced by a constantly growing population under particular environmental settings. The immediate or gradual impact of the success rate in food production and its potential influences on the social processes including the oppida abandonment are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Livestock-woodland models (currently under development) are not presented in this chapter.

  2. 2.

    Opinions on how steep slopes are still cultivable quite differ. In the agricultural models it was believed that slopes beyond 7–10 were not tillable, though this applies especially for the machinery not the manual cultivation (cf. Fischer et al. 2010). These (indeed arbitrary) categories deliberately represent more benevolent option suited for hand tools ( < 15) and ploughing animals ( < 10).

  3. 3.

    The categorization (with decreasing “suitability”) of the variables was the following: Aspect: slopes exposed to the cardinal points (from the South to the North); soil quality: Cambisols, Cambisols with Gley, Gleys and Pseudogleys, fluvial deposits in the floodplains; soil depth and rockiness: low, moderate, high (according to the BPEJ land evaluation); topographic wetness index: delimited the areas which were “too wet” (especially in the floodplains; more detailed categorization of this variable will be useful especially for the modeling of the pastures); topography: excluded slopes too steep ( > 15) or areas too rocky etc.

  4. 4.

    For example in case a male adult agent requires 3,000 kcal daily, this means 1,095,000 kcal yearly, which equals 322.05 kg of cereals/year (if only cereals are consumed).

  5. 5.

    This issue can be further examined for example also in relation to the feasting events when the surplus grain is consumed (cf. Van der Veen and Jones 2006).

  6. 6.

    This model forms a part of the main group of Agricultural Models. Its trial runs are presented on the smaller site (four households)—the lowland open settlement of Ptení, where the landscape settings are similar to the oppidum of Staré Hradisko.

References

  • Babuška R (2001) Fuzzy and Neural Control Disc. Course Lecture Notes, Delft University of Technology

    Google Scholar 

  • Baili P, Micheli A, Montanari A, Capocaccia R (2005) Comparison of four methods for estimating complete life tables from abridged life tables using mortality data supplied to EUROCARE-3. Math Popul Stud 12:183–198

    Article  Google Scholar 

  • Bakels C (2009) The Western European Loess Belt: Agrarian History, 5300 BC – AD 1000. Springer, Leiden

    Book  Google Scholar 

  • Bayliss-Smith T (1978) Maximum Populations and Standard Populations: The Carrying Capacity Question. In: Green D, Haselgrove C, Spriggs M (eds) Social Organisation and Settlement: Contributions from Anthropology, Archaeology, No. 47(i) in BAR International Series (Supplementary), Oxford, pp 129–151

    Google Scholar 

  • Brázdil R, Valášek H, Chromá K (2006) Documentary evidence of an economic character as a source for the study of meteorological and hydrological extremes and their impacts on human activities. Geogr Ann A 88(2):79–86

    Article  Google Scholar 

  • Bryson RA, DeWall K (eds) (2007) A Paleoclimatology Workbook: High Resolution, Site-Specific, Macrophysical Climate Modeling. Mammoth Site of Hot Springs, Hot Springs

    Google Scholar 

  • Campbell BMS (2007) Three Centuries of English Crops Yields, 1211–1491. Medieval Crop Yields Database, The School of Geography, Archaeology, and Palaeoecology, The Queen’s University of Belfast. http://www.cropyields.ac.uk

  • Chase-Dunn C, Niemeyer R, Alvarez A, Inoue H, Sheikh-Mohamed H, Chazan E (2007) Cycles of Rise and Fall, Upsweeps and Collapses: Changes in the Scale of Settlements and Polities Since the Bronze Age. In: Conference on Power Transitions, University of Indiana, Bloomington. http://irows.ucr.edu/papers/irows34/irows34.htm

  • Chisholm M (1979) Rural Settlement and Land Use. An Essay in Location. Hutchinson, London

    Google Scholar 

  • Cingolani P, Alcalá-Fdez J (2012) jFuzzyLogic: A Robust and Flexible Fuzzy-Logic Inference System Language Implementation. In: Proceedings of the IEEE World Congress on Computational Intelligence 2012

    Google Scholar 

  • Čižmář M (2005) Keltské oppidum Staré Hradisko. No. 4 in Archeologické památky střední Moravy, Vlastivědné Muzeum v Olomouci, Olomouc

    Google Scholar 

  • Danielisová A (2006) To the Architecture of Oppida: Reconstruction of One Part of Settlement Pattern Behind the Ramparts. In: Architektura i budownictwo epoki bra̧zu i wczesnych okresów epoki żelaza: Problemy rekonstrukcji. Muzeum Archeologiczne, Biskupin, pp 269–302

    Google Scholar 

  • Danielisová A, Hajnalová M (in print) Oppida and Agricultural Production - State of the Art and Prospects: Case Study from the Staré Hradisko Oppidum (Czech Republic). In: Produktion – Distribution – Ökonomie. Siedlungs- und Wirtschaftsmuster der Latènezeit. Kolloquium Otzenhausen 2011, Universitätsforschungen zur Prähistorischen Archäologie, S. Hornung

    Google Scholar 

  • Del Monte-Luna P, Brook BW, Zetina-Rejón MJ, Cruz-Escalona VH (2004) The carrying capacity of ecosystems. Glob Ecol Biogeogr 13:485–495

    Article  Google Scholar 

  • Dreslerová D (1995) A Settlement - Economic Model for a Prehistoric Microregion. Settlement Activities in the Vinoř-Stream Basin During the Hallstatt Period. In: Kuna M, Venclová N (eds) Whiter Archaeology? Papers in Honor of Evžen Neústupný, Institute of Archaeology, Prague and Academy of Sciences of the Czech Republic, pp 145–160

    Google Scholar 

  • Eastman JR (2006) IDRISI Andes: Guide to GIS and Image Processing. Clark University, Worcester. http://clarklabs.org/terms-of-use.cfm

  • Ebersbach R (2002) Von Bauern und Rindern: Eine Ökosystemanalyse zur Bedeutung der Rinderhaltung in bäuerlichen Gesellschaften als Grundlage zur Modellbildung im Neolithikum. No. 15 in Basler Beiträge zur Archäologie, Schwabe, Basel

    Google Scholar 

  • Erdkamp P (2005) The Grain Market in the Roman Empire: A Social, Political and Economic Study. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fischer E, Rösch M, Sillmann M, Ehrmann O, Liese-Kleiber H, Voigt R, Stobbe A, Kalis AJ, Stephan E, Schatz K, Posluschny A (2010) Landnutzung im Umkreis der Zentralorte Hohenasperg, Heuneburg und Ipf: Archäobotanische und archäologische Untersuchungen und Modellberechnungen zum Ertragspotential von Ackerbau und Viehhaltung. In: Krausse D (ed) “Fürstensitze” und Zentralorte der frühen Kelten, Band 2, no. 120 in Forschungen und Berichte zur Vor- und Frühgeschichte in Baden-Württemberg, Theiss, Stuttgart, pp 195–265

    Google Scholar 

  • Gorenflo LJ, Gale N (1990) Mapping regional settlement in information space. J Anthropol Archaeol 9:240–274

    Article  Google Scholar 

  • Gregg SA (1988) Foragers and Farmers. Population Interaction and Agricultural Expansion in Prehistoric Europe. University of Chicago Press, Chicago

    Google Scholar 

  • Hajnalová M (2003) Rastlinné makrozvyšky zo Starého Hradiska. Technical Report, Výskumná správa archeobotanická

    Google Scholar 

  • Halstead P (1987) Traditional and ancient rural economy in Mediterranean Europe: plus ça change? J Hell Stud 107:77–87

    Article  Google Scholar 

  • Halstead P (1995) Plough and power: the economic and social significance of cultivation with the ox-drawn ard in the Mediterranean. Bull Summerian Agric 8:11–21

    Google Scholar 

  • Halstead P, Jones G (1989) Agrarian ecology in the Greek islands: time stress, scale and risk. J Hell Stud 109:41–55

    Article  Google Scholar 

  • Halstead P, O’Shea J (eds) (1989) Bad year economics. Cambridge University Press, Cambridge

    Google Scholar 

  • Hejcman M, Kunzová E (2010) Sustainability of winter wheat production on sandy-loamy Cambisol in the Czech Republic: results from a long-term fertilizer and crop rotation experiment. Field Crops Res 115:191–199

    Article  Google Scholar 

  • Higgs ES, Vita-Finzi C (1972) Prehistoric Economies: A Territorial Approach. In: Higgs E (ed) Papers in Economic Prehistory. Studies by Members and Associates of the British Academy Major Research Project in the Early History of Agriculture. Cambridge University Press, Cambridge

    Google Scholar 

  • Jarosław J, Hildebrandt-Radke I (2009) Using multivariate statistics and fuzzy logic system to analyse settlement preferences in lowland areas of the temperate zone: an example from the polish lowlands. J Archaeol Sci 36:2096–2107

    Article  Google Scholar 

  • Klir G, Yuan B (1995) Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Kohler TA, van der Leeuw SE (eds) (2007) The Model-Based Archaeology of Socionatural Systems. School for Advanced Research Resident Scholar Book, Santa Fe

    Google Scholar 

  • Kunzová E, Hejcman M (2009) Yield development of winter wheat over 50 years of FYM, N, P and K fertilizer application on black earth soil in the Czech Republic. Field Crops Res 111:226–234

    Article  Google Scholar 

  • Küster H (1993) The Carbonized Plant Remains. In: Wells P (ed) Settlement, Economy and Cultural Change at the End of the European Iron Age. Excavations at Kelheim in Bavaria, 1987–1991, International Monographs in Prehistory, Archaeological Series, vol 6, Ann Arbor, pp 57–60

    Google Scholar 

  • Lindsay J (2012) Whitebox Geospatial Analysis Tools. Manual. http://www.uoguelph.ca/~hydrogeo/Whitebox/Help/MainHelp.html

  • Machálek T, Cimler R, Olševičová K, Danielisová A (2013) Fuzzy Methods in Land Use Modeling for Archaeology. In: Proceedings of Mathematical Methods in Economics 2013

    Google Scholar 

  • Meduna J (1961) Staré Hradisko. Katalog nálezŭložených v muzeu města Boskovic. FAM II. Brno. Museum Catalogue

    Google Scholar 

  • Meduna J (1970a) Das keltische oppidum Staré Hradisko in Mähren. Germania 48:34–59

    Google Scholar 

  • Meduna J (1970b) Star’e Hradisko, ii. Katalog der Funde aus den Museen in Brno (Brünn), Praha (Prag), Olomouc, Plumlov und Prostějov. FAM V. Brno. Museum Catalogue

    Google Scholar 

  • Neuhäuslová Z (2001) Potential Natural Vegetation of the Czech Republic, Braun-Blanquetia: recueil de travaux de géobotanique, vol 30. Dipartimento di Botanica ed Ecologia dell’Università di Camerino, Camerino, map

    Google Scholar 

  • Olševičová K, Cimler R, Machálek T (2012) Agent-Based Model of Celtic Population Growth: NetLogo and Python. In: Nguyen N, Trawiński B, Katarzyniak R, Jo GS (eds) Advanced Methods for Computational Collective Intelligence. Studies in Computational Intelligence, vol 457. Springer, Berlin

    Google Scholar 

  • Ramirez O, Mishra O, Field J (2001) Are Crop Yields Normally Distributed? Paper Presented at the Annual Meeting of the American Agricultural Economics Association, Chicago

    Google Scholar 

  • Reshmidevi T, Eldho T, Jana R (2009) A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds. Agric Syst 101(1–2):101–109

    Article  Google Scholar 

  • Ross T (2010) Fuzzy Logic with Engineering Applications, 3rd edn. Wiley, Chichester

    Book  Google Scholar 

  • Rothamsted Research (2006) Guide to the Classical and Other Long-Term Experiments, Datasets and Sample Archive. Lawes Agricultural Trust, Bury St. Edmund

    Google Scholar 

  • Russell K (1988) After Eden. The Behavioral Ecology of Early Food Production in the Near East and North Africa, BAR International Series, vol 391. British Archaeological Reports, Oxford

    Google Scholar 

  • Salač V (2000) The Oppida in Bohemia: A Wrong Step in the Urbanization of the Country? In: Guichard V, Urban SSO (eds) Les Processus d’urbanisation à l’âge du Fer, Collection Bibracte 4, Archaeological Centre Bibracte, Glux en Glenne, pp 151–156

    Google Scholar 

  • Salač V (2006) Die keltischen Oppida und ihre Macht. In: Krenn-Leeb A (ed) Wirtschaft, Macht und Strategie – Höhensiedlungen und ihre Funktionen in der Ur- und Frühgeschichte, Archäologie Österreichs Spezial, vol 1, Österreichische Gesellschaft für Ur- und Frühgeschichte, pp 233–245

    Google Scholar 

  • Saller R (1994) Patriarchy, Property and Death in the Roman Family. Cambridge Studies in Population, Economy and Society in Past Time. Cambridge University Press, Cambridge

    Google Scholar 

  • Schreg R (2011) Feeding the Village - Reflections on the Ecology and Resilience of the Medieval Rural Economy. In: Klápště J, Sommer P (eds) Processing, Storage, Distribution of Food. Food in the Medieval Rural Environment (Ruralia VIII), Ruralia, vol VIII. Brepols, Turnhout, pp 301–320

    Google Scholar 

  • Stonedahl F (2011) Genetic Algorithms for the Exploration of Parameter Spaces in Agent Based Models. Ph.D. thesis, Northwestern University, Evanston. http://forrest.stonedahl.com/thesis/forrest_stonedahl_thesis.pdf

  • Stonedahl F, Wilensky U (2010) Evolutionary Robustness Checking in the Artificial Anasazi Model. In: Proceedings of the 2010 AAAI Fall Symposium on Complex Adaptive Systems

    Google Scholar 

  • Szeliski R (2010) Computer Vision: Algorithms and Applications. Springer, Berlin. http://szeliski.org/Book/

  • Turchin P (2009) Long-term population cycles in human societies. Ann N Y Acad Sci 1162:1–17

    Article  Google Scholar 

  • Turchin P, Nefedov SA (2009) Secular Cycles. Princeton University Press, Princeton

    Google Scholar 

  • Upadhyay B, Smith E (2005) Modeling Crop Yield Distributions from Small Samples. In: Canadian Agricultural Economics Society Annual Meeting, San Francisco. http://purl.umn.edu/34161

  • Van der Veen M, Jones G (2006) A re-analysis of agricultural production and consumption: implications for understanding the British Iron Age. Veg Hist Archaeobot 15:217–228

    Article  Google Scholar 

  • Wainwright J (2008) Can modelling enable us to understand the rôle of humans in landscape evolution? Geoforum 39:659–674

    Article  Google Scholar 

  • Wilensky U (1999) NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston. http://ccl.northwestern.edu/netlogo/

  • Wright HT (2007) Progress in Cultural Modeling. In: Kohler T, van der Leeuw SE (eds) The Model-Based Archaeology of Socionatural Systems. SAR Press, Santa Fe, pp 229–232

    Google Scholar 

Download references

Acknowledgements

This paper was made possible by the “Social modelling as a tool for understanding Celtic society and cultural changes at the end of the Iron Age” project, supported by the Czech Science Foundation (Grant No.P405/12/0926), and by the “Agent-based models and Social Simulation” project, supported by the Grant Agency of Excellence, University of Hradec Králové, Faculty of Informatics and Management. The authors would like to thank the editors and the anonymous reviewers for their helpful and constructive comments that greatly contributed to improving the final version of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alžběta Danielisová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Danielisová, A., Olševičová, K., Cimler, R., Machálek, T. (2015). Understanding the Iron Age Economy: Sustainability of Agricultural Practices under Stable Population Growth. In: Wurzer, G., Kowarik, K., Reschreiter, H. (eds) Agent-based Modeling and Simulation in Archaeology. Advances in Geographic Information Science. Springer, Cham. https://doi.org/10.1007/978-3-319-00008-4_9

Download citation

Publish with us

Policies and ethics