Skip to main content

Specific Vulnerability of Substantia Nigra Compacta Neurons

  • Chapter
  • First Online:
Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 73))

  • 1440 Accesses

Abstract

The specific loss of substantia nigra compacta (SNc) neurons in Parkinson's disease (PD) has been the main driving force in initiating research efforts to unravel the apparent SNc-specific vulnerability. Initially, metabolic constraints due to high dopamine turnover have been the main focus in the attempts to solve this issue. Recently, it has become clear that fundamental differences in the molecular signature are adding to the neuronal vulnerability and provide specific molecular dependencies. Here, the different processes that define the molecular background of SNc vulnerability are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CRE:

Cyclization recombinase

DAT:

Dopamine transporter

DOPAC:

3,4-dihydroxyphenylacetic acid

DOPAL:

3,4-dihydroxyphenylacetaldehyde

En1/2:

Engrailed

GDNF:

Glial cell line-derived neurotrophic factor

MAO-A:

Monoamine oxidase A

mdDA:

Mesodiencephalic dopaminergic

PD:

Parkinson’s disease

RA:

Retinoic acid

Retinol:

Vitamin A

RR:

Retrorubral

SNc:

Substantia nigra compacta

Tgf-β:

Transforming growth factor β

VTA:

Ventral tegmental area

Wv:

Weaver

Bibliography

  • Acampora D, Gulisano M, Simeone A (1999) Otx genes and the genetic control of brain morphogenesis. Mol Cell Neurosci 13(1):1–8

    CAS  PubMed  Google Scholar 

  • Acampora D, Postiglione MP, Avantaggiato V et al (2000) The role of Otx and Otp genes in brain development. Int J Dev Biol 44(6):669–677

    CAS  PubMed  Google Scholar 

  • Acampora D, Gulisano M, Broccoli V et al (2001) Otx genes in brain morphogenesis. Prog Neurobiol 64(1):69–95

    CAS  PubMed  Google Scholar 

  • Acampora D, Annino A, Tuorto F et al (2005) Otx genes in the evolution of the vertebrate brain. Brain Res Bull 66(4–6):410–420

    CAS  PubMed  Google Scholar 

  • Alexi T, Hefti F (1993) Trophic actions of transforming growth factor alpha on mesencephalic dopaminergic neurons developing in culture. Neuroscience 55(4):903–918

    CAS  PubMed  Google Scholar 

  • Alfahel-Kakunda A, Silverman WF (1997) Calcium-binding proteins in the substantia nigra and ventral tegmental area during development: correlation with dopaminergic compartmentalization. Brain Res Dev Brain Res 103(1):9–20

    CAS  PubMed  Google Scholar 

  • Altar CA, Boylan CB, Fritsche M et al (1994) The neurotrophins NT-4/5 and BDNF augment serotonin, dopamine, and GABAergic systems during behaviorally effective infusions to the substantia nigra. Exp Neurol 130(1):31–40

    CAS  PubMed  Google Scholar 

  • Alward WL, Semina EV, Kalenak JW et al (1998) Autosomal dominant iris hypoplasia is caused by a mutation in the Rieger syndrome (RIEG/PITX2) gene. Am J Ophthalmol 125(1):98–100

    CAS  PubMed  Google Scholar 

  • Andersson E, Jensen JB, Parmar M et al (2006a) Development of the mesencephalic dopaminergic neuron system is compromised in the absence of neurogenin 2. Development 133(3):507–516

    CAS  PubMed  Google Scholar 

  • Andersson E, Tryggvason U, Deng Q et al (2006b) Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124(2):393–405

    CAS  PubMed  Google Scholar 

  • Baquet ZC, Bickford PC, Jones KR (2005) Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 25(26):6251–6259

    CAS  PubMed  Google Scholar 

  • Beck KD (1994) Functions of brain-derived neurotrophic factor, insulin-like growth factor-I and basic fibroblast growth factor in the development and maintenance of dopaminergic neurons. Prog Neurobiol 44(5):497–516

    CAS  PubMed  Google Scholar 

  • Brederlau A, Faigle R, Kaplan P et al (2002) Bone morphogenetic proteins but not growth differentiation factors induce dopaminergic differentiation in mesencephalic precursors. Mol Cell Neurosci 21(3):367–378

    CAS  PubMed  Google Scholar 

  • Burbach JPH, Smits SM, Smidt MP (2003) Transcription factors in the development of midbrain dopamine neurons. Ann NY Acad Sci 991(Jun):61–68

    CAS  PubMed  Google Scholar 

  • Caldwell MA, Svendsen CN (1998) Heparin, but not other proteoglycans potentiates the mitogenic effects of FGF-2 on mesencephalic precursor cells. Exp Neurol 152(1):1–10

    CAS  PubMed  Google Scholar 

  • Campione M, Steinbeisser H, Schweickert A et al (1999) The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 126(6):1225–1234

    CAS  PubMed  Google Scholar 

  • Chalazonitis A, Kessler JA, Twardzik DR et al (1992) Transforming growth factor alpha, but not epidermal growth factor, promotes the survival of sensory neurons in vitro. J Neurosci 12(2):583–594

    CAS  PubMed  Google Scholar 

  • Chung CY, Seo H, Sonntag K et al (2005a) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 14(13):1709–1725

    CAS  PubMed  Google Scholar 

  • Chung S, Hedlund E, Hwang M et al (2005b) The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Mol Cell Neurosci 28(2):241–252

    CAS  PubMed  Google Scholar 

  • Chung CY, Koprich JB, Endo S et al (2007) An endogenous serine/threonine protein phosphatase inhibitor, G-substrate, reduces vulnerability in models of Parkinson's disease. J Neurosci 27(31):8314–8323

    CAS  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39(6):889–909

    CAS  PubMed  Google Scholar 

  • Espejo M, Cutillas B, Arenas TE et al (2000) Increased survival of dopaminergic neurons in striatal grafts of fetal ventral mesencephalic cells exposed to neurotrophin-3 or glial cell line-derived neurotrophic factor. Cell Transplant 9(1):45–53

    CAS  PubMed  Google Scholar 

  • Farkas LM, Krieglstein K (2002) Heparin-binding epidermal growth factor-like growth factor (HB-EGF) regulates survival of midbrain dopaminergic neurons. J Neural Transm 109(3):267–277

    CAS  PubMed  Google Scholar 

  • Farkas LM, Dünker N, Roussa E et al (2003) Transforming growth factor-beta(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J Neurosci 23(12):5178–5186

    CAS  PubMed  Google Scholar 

  • Ferri ALM, Lin W, Mavromatakis YE et al (2007) Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development 134(15):2761–2769

    CAS  PubMed  Google Scholar 

  • Galter D, Buervenich S, Carmine A et al (2003) ALDH1 mRNA: presence in human dopamine neurons and decreases in substantia nigra in Parkinson's disease and in the ventral tegmental area in schizophrenia. Neurobiol Dis 14(3):637–647

    CAS  PubMed  Google Scholar 

  • Galvin JE (2006) Interaction of alpha-synuclein and dopamine metabolites in the pathogenesis of Parkinson's disease: a case for the selective vulnerability of the substantia nigra. Acta Neuropathol 112(2):115–126

    PubMed  Google Scholar 

  • Glavic A, Gümez-Skarmeta JL, Mayor R (2002) The homeoprotein Xiro1 is required for midbrain-hindbrain boundary formation. Development 129(7):1609–1621

    CAS  PubMed  Google Scholar 

  • Greene JG, Dingledine R, Greenamyre JT (2005) Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiol Dis 18(1):19–31

    CAS  PubMed  Google Scholar 

  • Grünblatt E, Mandel S, Jacob-Hirsch J et al (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 111(12):1543–1573

    PubMed  Google Scholar 

  • Haber SN, Ryoo H, Cox C et al (1995) Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol 362(3):400–410

    CAS  PubMed  Google Scholar 

  • Hagg T (1998) Neurotrophins prevent death and differentially affect tyrosine hydroxylase of adult rat nigrostriatal neurons in vivo. Exp Neurol 149(1):183–192

    CAS  PubMed  Google Scholar 

  • Hanke M, Farkas LM, Jakob M et al (2004) Heparin-binding epidermal growth factor-like growth factor: a component in chromaffin granules which promotes the survival of nigrostriatal dopaminergic neurones in vitro and in vivo. Neuroscience 124(4):757–766

    CAS  PubMed  Google Scholar 

  • Hess EJ (1996) Identification of the weaver mouse mutation: the end of the beginning. Neuron 16(6):1073–1076

    CAS  PubMed  Google Scholar 

  • Horger BA, Nishimura MC, Armanini M et al (1998) Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J Neurosci 18(13):4929–4937

    CAS  PubMed  Google Scholar 

  • Hwang DY, Ardayfio P, Kang UJ et al (2003) Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res 114(2):123–131

    CAS  PubMed  Google Scholar 

  • Hyman C, Hofer M, Barde YA et al (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350(6315):230–232

    CAS  PubMed  Google Scholar 

  • Hyman C, Juhasz M, Jackson C et al (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J Neurosci 14(1):335–347

    CAS  PubMed  Google Scholar 

  • Hynes M, Rosenthal A (1999) Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr Opin Neurobiol 9(1):26–36

    CAS  PubMed  Google Scholar 

  • Hynes M, Porter JA, Chiang C et al (1995) Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron 15(1):35–44

    CAS  PubMed  Google Scholar 

  • Hynes M, Ye W, Wang K et al (2000) The seven-transmembrane receptor smoothened cell-autonomously induces multiple ventral cell types. Nat Neurosci 3(1):41–46

    CAS  PubMed  Google Scholar 

  • Iwakura Y, Piao Y-S, Mizuno M et al (2005) Influences of dopaminergic lesion on epidermal growth factor-ErbB signals in Parkinson's disease and its model: neurotrophic implication in nigrostriatal neurons. J Neurochem 93(4):974–983

    CAS  PubMed  Google Scholar 

  • Jacobs FMJ, Smits SM, Hornman KJM et al (2006) Strategies to unravel molecular codes essential for the development of meso-diencephalic dopaminergic neurons. J Physiol 575(Pt 2):397–402

    CAS  PubMed  Google Scholar 

  • Jacobs FMJ, Smits SM, Noorlander CW et al (2007) Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency. Development 134(14):2673–2684

    CAS  PubMed  Google Scholar 

  • Jordan J, Böttner M, Schluesener HJ et al (1997) Bone morphogenetic proteins: neurotrophic roles for midbrain dopaminergic neurons and implications of astroglial cells. Eur J Neurosci 9(8):1699–1709

    CAS  PubMed  Google Scholar 

  • Joyner AL, Liu A, Millet S (2000) Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol 12(6):736–741

    CAS  PubMed  Google Scholar 

  • Kaneda K, Imanishi M, Nambu A et al (2003) Differential expression patterns of mGluR1 alpha in monkey nigral dopamine neurons. Neuroreport 14(7):947–950

    CAS  PubMed  Google Scholar 

  • Kele J, Simplicio N, Ferri ALM et al (2006) Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development 133(3):495–505

    CAS  PubMed  Google Scholar 

  • Kramer ER, Aron L, Ramakers GMJ et al (2007) Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5(3):e39

    PubMed  Google Scholar 

  • Krauss JK, Mohadjer M, Wakhloo AK et al (1991) Dystonia and akinesia due to pallidoputaminal lesions after disulfiram intoxication. Mov Disord 6(2):166–170

    CAS  PubMed  Google Scholar 

  • Krieglstein K (2004) Factors promoting survival of mesencephalic dopaminergic neurons. Cell Tissue Res 318(1):73–80

    CAS  PubMed  Google Scholar 

  • Krieglstein K, Suter-Crazzolara C, Fischer WH et al (1995a) TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J 14(4):736–742

    CAS  PubMed  Google Scholar 

  • Krieglstein K, Suter-Crazzolara C, Hötten G et al (1995b) Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-beta superfamily, on midbrain dopaminergic neurons. J Neurosci Res 42(5):724–732

    CAS  PubMed  Google Scholar 

  • Krieglstein K, Maysinger D, Unsicker K (1996) The survival response of mesencephalic dopaminergic neurons to the neurotrophins BDNF and NT-4 requires priming with serum: comparison with members of the TGF-beta superfamily and characterization of the serum-free culture system. J Neural Transm Suppl 47:247–258

    CAS  PubMed  Google Scholar 

  • Legros H, Dingeval M-G, Janin F et al (2004) Toxicity of a treatment associating dopamine and disulfiram for catecholaminergic neuroblastoma SH-SY5Y cells: relationships with 3, 4-dihydroxyphenylacetaldehyde formation. Neurotoxicology 25(3):365–375

    CAS  PubMed  Google Scholar 

  • Levick V, Coffey H, D'Mello SR (1995) Opposing effects of thapsigargin on the survival of developing cerebellar granule neurons in culture. Brain Res 676(2):325–335

    CAS  PubMed  Google Scholar 

  • Lin J, Freeman MR (2003) Transactivation of ErbB1 and ErbB2 receptors by angiotensin II in normal human prostate stromal cells. Prostate 54(1):1–7

    PubMed  Google Scholar 

  • Lindholm P, Voutilainen MH, Laurén J et al (2007) Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 448(7149):73–77

    CAS  PubMed  Google Scholar 

  • Lingor P, Unsicker K, Krieglstein K (2000) GDNF and NT-4 protect midbrain dopaminergic neurons from toxic damage by iron and nitric oxide. Exp Neurol 163(1):55–62

    CAS  PubMed  Google Scholar 

  • Liss B, Bruns R, Roeper J (1999) Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J 18(4):833–846

    CAS  PubMed  Google Scholar 

  • Liss B, Haeckel O, Wildmann J et al (2005) K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8(12):1742–1751

    CAS  PubMed  Google Scholar 

  • Mandel S, Grunblatt E, Riederer P et al (2005) Gene expression profiling of sporadic Parkinson's disease substantia nigra pars compacta reveals impairment of ubiquitin-proteasome subunits, SKP1A, aldehyde dehydrogenase, and chaperone HSC-70. Ann NY Acad Sci 1053:356–375

    CAS  PubMed  Google Scholar 

  • Marchitti SA, Deitrich RA, Vasiliou V (2007) Neurotoxicity and metabolism of the catecholamine-derived 3, 4-dihydroxyphenylacetaldehyde and 3, 4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 59(2):125–150

    CAS  PubMed  Google Scholar 

  • Maxwell SL, Ho H-Y, Kuehner E et al (2005) Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. Dev Biol 282(2):467–479

    CAS  PubMed  Google Scholar 

  • McCaffery P, Dräger UC (1994a) High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc Natl Acad Sci USA 91(16):7772–7776

    CAS  PubMed  Google Scholar 

  • McCaffery P, Dräger UC (1994b) Hot spots of retinoic acid synthesis in the developing spinal cord. Proc Natl Acad Sci USA 91(15):7194–7197

    CAS  PubMed  Google Scholar 

  • Meyer M, Matarredona ER, Seiler RW et al (2001) Additive effect of glial cell line-derived neurotrophic factor and neurotrophin-4/5 on rat fetal nigral explant cultures. Neuroscience 108(2):273–284

    CAS  PubMed  Google Scholar 

  • Millet S, Campbell K, Epstein DJ et al (1999) A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401(6749):161–164

    CAS  PubMed  Google Scholar 

  • Mizuno Y, Hattori N, Kubo S-I et al (2008) Progress in the pathogenesis and genetics of Parkinson's disease. Philos Trans R Soc Lond B Biol Sci 363(1500):2215–2227

    CAS  PubMed  Google Scholar 

  • Murase S, McKay RD (2006) A specific survival response in dopamine neurons at most risk in Parkinson's disease. J Neurosci 26(38):9750–9760

    CAS  PubMed  Google Scholar 

  • Nohe A, Keating E, Knaus P et al (2004) Signal transduction of bone morphogenetic protein receptors. Cell Signal 16(3):291–299

    CAS  PubMed  Google Scholar 

  • Numan S, Gall CM, Seroogy KB (2005) Developmental expression of neurotrophins and their receptors in postnatal rat ventral midbrain. J Mol Neurosci 27(2):245–260

    CAS  PubMed  Google Scholar 

  • Nunes I, Tovmasian LT, Silva RM et al (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 100(7):4245–4250

    CAS  PubMed  Google Scholar 

  • O'Keeffe GW, Dockery P, Sullivan AM (2004) Effects of growth/differentiation factor 5 on the survival and morphology of embryonic rat midbrain dopaminergic neurones in vitro. J Neurocytol 33(5):479–488

    PubMed  Google Scholar 

  • Peterson AL, Nutt JG (2008) Treatment of Parkinson's disease with trophic factors. Neurotherapeutics 5(2):270–280

    CAS  PubMed  Google Scholar 

  • Petrova P, Raibekas A, Pevsner J et al (2003) MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci 20(2):173–188

    CAS  PubMed  Google Scholar 

  • Poulsen KT, Armanini MP, Klein RD et al (1994) TGF beta 2 and TGF beta 3 are potent survival factors for midbrain dopaminergic neurons. Neuron 13(5):1245–1252

    CAS  PubMed  Google Scholar 

  • Prakash N, Brodski C, Naserke T et al (2006) A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development 133(1):89–98

    CAS  PubMed  Google Scholar 

  • Puelles E, Acampora D, Lacroix E et al (2003) Otx dose-dependent integrated control of antero-posterior and dorso-ventral patterning of midbrain. Nat Neurosci 6(5):453–460

    CAS  PubMed  Google Scholar 

  • Puelles E, Annino A, Tuorto F et al (2004) Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Development 131(9):2037–2048

    CAS  PubMed  Google Scholar 

  • Reuss B, Unsicker K (2000) Survival and differentiation of dopaminergic mesencephalic neurons are promoted by dopamine-mediated induction of FGF-2 in striatal astroglial cells. Mol Cell Neurosci 16(6):781–792

    CAS  PubMed  Google Scholar 

  • Rhinn M, Brand M (2001) The midbrain-hindbrain boundary organizer. Curr Opin Neurobiol 11(1):34–42

    CAS  PubMed  Google Scholar 

  • Roussa E, Farkas LM, Krieglstein K (2004) TGF-beta promotes survival on mesencephalic dopaminergic neurons in cooperation with Shh and FGF-8. Neurobiol Dis 16(2):300–310

    CAS  PubMed  Google Scholar 

  • Roussa E, Wiehle M, Dünker N et al (2006) TGF-beta is required for differentiation of mouse mesencephalic progenitors into dopaminergic neurons in vitro and in vivo. Ectopic induction in dorsal mesencephalon. Stem Cells 24(9):2120–2129

    CAS  Google Scholar 

  • Sariola H, Saarma M (2003) Novel functions and signalling pathways for GDNF. J Cell Sci 116(Pt 19):3855–3862

    CAS  PubMed  Google Scholar 

  • Saucedo-Cardenas O, Quintana-Hau JD, Le WD et al (1998) Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci U S A 95(7):4013–4018

    CAS  PubMed  Google Scholar 

  • Schein JC, Hunter DD, Roffler-Tarlov S (1998) Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver. Dev Biol 204(2):432–450

    CAS  PubMed  Google Scholar 

  • Schmidt MJ, Sawyer BD, Perry KW et al (1982) Dopamine deficiency in the weaver mutant mouse. J Neurosci 2(3):376–380

    CAS  PubMed  Google Scholar 

  • Segni AD, Shaharabani E, Stein RB et al (2005) Neuregulins rescue PC12-ErbB-4 cells from cell death induced by beta-amyloid peptide: involvement of PI3K and PKC. J Mol Neurosci 26(1):57–69

    PubMed  Google Scholar 

  • Semina EV, Reiter RS, Murray JC (1997) Isolation of a new homeobox gene belonging to the Pitx/Rieg family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum Mol Genet 6(12):2109–2116

    CAS  PubMed  Google Scholar 

  • Shults CW, Ray J, Tsuboi K et al (2000) Fibroblast growth factor-2-producing fibroblasts protect the nigrostriatal dopaminergic system from 6-hydroxydopamine. Brain Res 883(2):192–204

    CAS  PubMed  Google Scholar 

  • Sidhu A, Wersinger C, Vernier P (2004) alpha-Synuclein regulation of the dopaminergic transporter: a possible role in the pathogenesis of Parkinson's disease. FEBS Lett 565(1–3):1–5

    CAS  PubMed  Google Scholar 

  • Simeone A (2002) Towards the comprehension of genetic mechanisms controlling brain morphogenesis. Trends Neurosci 25(3):119–121

    CAS  PubMed  Google Scholar 

  • Simeone A, Puelles E, Acampora D (2002) The Otx family. Curr Opin Genet Dev 12(4):409–415

    CAS  PubMed  Google Scholar 

  • Simon HH, Saueressig H, Wurst W et al (2001) Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci 21(9):3126–3134

    CAS  PubMed  Google Scholar 

  • Simon HH, Thuret S, Alberi L (2004) Midbrain dopaminergic neurons: control of their cell fate by the engrailed transcription factors. Cell Tissue Res 318(1):53–61

    CAS  PubMed  Google Scholar 

  • Simon HH, Scholz C, O'Leary DDM (2005) Engrailed genes control developmental fate of serotonergic and noradrenergic neurons in mid- and hindbrain in a gene dose-dependent manner. Mol Cell Neurosci 28(1):96–105

    CAS  PubMed  Google Scholar 

  • Smidt MP, Burbach JPH (2007) How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 8(1):21–32

    CAS  PubMed  Google Scholar 

  • Smidt MP, van Schaick HS, Lanctôt C et al (1997) A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 94(24):13305–13310

    CAS  PubMed  Google Scholar 

  • Smidt MP, Cox JJ, van Schaick HS et al (2000a) Analysis of three Ptx2 splice variants on transcriptional activity and differential expression pattern in the brain. J Neurochem 75(5):1818–1825

    CAS  PubMed  Google Scholar 

  • Smidt MP, Asbreuk CH, Cox JJ et al (2000b) A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci 3(4):337–341

    CAS  PubMed  Google Scholar 

  • Smidt MP, Smits SM, Bouwmeester H et al (2004a) Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 131(5):1145–1155

    CAS  PubMed  Google Scholar 

  • Smidt MP, Smits SM, Burbach JPH (2004b) Homeobox gene Pitx3 and its role in the development of dopamine neurons of the substantia nigra. Cell Tissue Res 318(1):35–43

    CAS  PubMed  Google Scholar 

  • Smith D, Wagner E, Koul O et al (2001) Retinoic acid synthesis for the developing telencephalon. Cereb Cortex 11(10):894–905

    CAS  PubMed  Google Scholar 

  • Smits SM, Ponnio T, Conneely OM et al (2003) Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur J Neurosci 18(7):1731–1738

    PubMed  Google Scholar 

  • Smits SM, Terwisscha AF, van der Linden AJA et al (2004) Species differences in brain pre-pro-neurotensin/neuromedin N mRNA distribution: the expression pattern in mice resembles more closely that of primates than rats. Brain Res Mol Brain Res 125(1–2):22–28

    CAS  PubMed  Google Scholar 

  • Smits SM, van der Nobelen S, Hornman KJM et al (2005) Signalling through phospholipase C beta 4 is not essential for midbrain dopaminergic neuron survival. Neuroscience 136(1):171–179

    CAS  PubMed  Google Scholar 

  • Smits SM, Burbach JPH, Smidt MP (2006) Developmental origin and fate of meso-diencephalic dopamine neurons. Prog Neurobiol 78(1):1–16

    CAS  PubMed  Google Scholar 

  • Sonnier L, Pen GL, Hartmann A et al (2007) Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1. J Neurosci 27(5):1063–1071

    CAS  PubMed  Google Scholar 

  • Stachowiak MK, Moffett J, Maher P et al (1997) Growth factor regulation of cell growth and proliferation in the nervous system. A new intracrine nuclear mechanism. Mol Neurobiol 15(3):257–283

    CAS  Google Scholar 

  • Surmeier DJ (2007) Calcium, ageing, and neuronal vulnerability in Parkinson's disease. Lancet Neurol 6(10):933–938

    CAS  PubMed  Google Scholar 

  • Szeto DP, Rodriguez-Esteban C, Ryan AK et al (1999) Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev 13(4):484–494

    CAS  PubMed  Google Scholar 

  • Thuret S, Alavian KN, Gassmann M et al (2004) The neuregulin receptor, ErbB4, is not required for normal development and adult maintenance of the substantia nigra pars compacta. J Neurochem 91(6):1302–1311

    CAS  PubMed  Google Scholar 

  • Timmer M, Müller-Ostermeyer F, Kloth V et al (2004) Enhanced survival, reinnervation, and functional recovery of intrastriatal dopamine grafts co-transplanted with Schwann cells overexpressing high molecular weight FGF-2 isoforms. Exp Neurol 187(1):118–136

    CAS  PubMed  Google Scholar 

  • Tomac A, Widenfalk J, Lin LF et al (1995) Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proc Natl Acad Sci USA 92(18):8274–8278

    CAS  PubMed  Google Scholar 

  • Vernay B, Koch M, Vaccarino F et al (2005) Otx2 regulates subtype specification and neurogenesis in the midbrain. J Neurosci 25(19):4856–4867

    CAS  PubMed  Google Scholar 

  • Verney C, Zecevic N, Ezan P (2001) Expression of calbindin D28K in the dopaminergic mesotelencephalic system in embryonic and fetal human brain. J Comp Neurol 429(1):45–58

    CAS  PubMed  Google Scholar 

  • von Bohlen und Halbach O, Minichiello L, Unsicker K (2005) Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of alpha-synuclein in the substantia nigra. FASEB J 19(12):1740–1742

    Google Scholar 

  • Wallén A, Zetterström RH, Solomin L et al (1999) Fate of mesencephalic AHD2-expressing dopamine progenitor cells in NURR1 mutant mice. Exp Cell Res 253(2):737–746

    PubMed  Google Scholar 

  • Wallén A, Castro DS, Zetterström RH et al (2001) Orphan nuclear receptor Nurr1 is essential for Ret expression in midbrain dopamine neurons and in the brain stem. Mol Cell Neurosci 18(6):649–663

    Google Scholar 

  • Wassarman KM, Lewandoski M, Campbell K et al (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124(15):2923–2934

    CAS  PubMed  Google Scholar 

  • Westerlund M, Galter D, Carmine A et al (2005) Tissue- and species-specific expression patterns of class I, III, and IV Adh and Aldh1 mRNAs in rodent embryos. Cell Tissue Res 322(2):227–236

    CAS  PubMed  Google Scholar 

  • Wood TK, McDermott KW, Sullivan AM (2005) Differential effects of growth/differentiation factor 5 and glial cell line-derived neurotrophic factor on dopaminergic neurons and astroglia in cultures of embryonic rat midbrain. J Neurosci Res 80(6): 759–766

    CAS  PubMed  Google Scholar 

  • Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120(7): 2065–2075

    CAS  PubMed  Google Scholar 

  • Yurek DM, Zhang L, Fletcher-Turner A et al (2004) Supranigral injection of neuregulin1-beta induces striatal dopamine overflow. Brain Res 1028(1):116–119

    CAS  PubMed  Google Scholar 

  • Zetterström RH, Solomin L, Jansson L et al (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276(5310):248–250

    PubMed  Google Scholar 

  • Zhou C, Xiao C, Commissiong JW et al (2006) Mesencephalic astrocyte-derived neurotrophic factor enhances nigral gamma-aminobutyric acid release. Neuroreport 17(3):293–297

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marten P. Smidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien Printed in Germany

About this chapter

Cite this chapter

Smidt, M.P. (2009). Specific Vulnerability of Substantia Nigra Compacta Neurons. In: Giovanni, G., Di Matteo, V., Esposito, E. (eds) Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Journal of Neural Transmission. Supplementa, vol 73. Springer, Vienna. https://doi.org/10.1007/978-3-211-92660-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-92660-4_3

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-92659-8

  • Online ISBN: 978-3-211-92660-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics