Skip to main content

Flow Induced Processes Causing Oriented Crystallization

  • Chapter
  • First Online:
Crystallization Modalities in Polymer Melt Processing

Abstract

The investigations in this field started around the year 1970. From the beginning shear flow [1] and extensional flow [2] experiments were carried out. Another classification was with respect to experiments, where flow was continued until the viscosity of the melt started to increase rapidly [1], and those, where the progress of crystallization was followed during flow in a more subtle way by dilatometry [3], by scattering experiments [4] or by a count of upcoming nuclei [5]. In fact, flow can increase the speed of crystallization enormously. Last not least the pioneering work by Van der Vegt and Smit [6] should not be forgotten. With decreasing temperatures these authors observed an increasing obstruction at the entrance to a capillary, which was used for viscometry. The authors correctly interpreted this obstruction as the result of a crystallization starting under the influence of the extensional entrance flow. Another classification has been with respect to the type of rheometers used. Parallel plate rotational rheometers were often used [3, 4], lately also in [7, 8] (using the apparatus of Linkam Scientific Instruments with glass plates). For high shear rates rectilinear flow is required. In rotational viscometers secondary flow can be very disturbing at high angular velocities. For a suitable rectilinear flow a sandwich construction has been used, where one glass plate moves at a constant distance with respect to another glass plate. [1, 9–11]. A rectilinear flow is also obtained, if a glass fiber is drawn through the undercooled melt [12]. Near the surface of the fiber rather high rates of shear can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note added at proof: The present author regrets for having overlooked a decisive paper by a group of Japanese authors with Prof. Kornfield [79]. These authors applied small angle neutron scattering to three special samples of iPP. These samples were mixtures of three fractions of different molar masses. In each sample one of the fractions was Deuterium labeled. Of particular interest was the sample, in which the low molar mass fraction was labeled with Deuterium. After partial remelting the highly oriented surface layer, as obtained after duct flow, the authors found that the same amount of the said low molar mass fraction was present in the surface layer and in the bulk. This means that no selection of the high molar mass molecules has occurred during the crystallization process, which was caused by the flow treatment.

References

  1. Haas TW, Maxwell B (1969) Effects of shear stress on the crystallization of linear polyethylene and polybutene-1. Polym Eng Sci 9:225–241

    Article  CAS  Google Scholar 

  2. Mackley MR, Keller A (1973) Flow induced crystallization of polyethylene melts. Polymer 14:16–20

    Article  CAS  Google Scholar 

  3. Sherwood CH, Price FP, Stein RS (1978) Effect of shear on the crystallization kinetics of poly(ethylene oxide) and poly(ε-caprolactone) melts. J Polym Sci Polym Symp 63:77–94

    Article  CAS  Google Scholar 

  4. Ulrich RD, Price FP (1976) Morphology development during shearing of poly(ethylene oxide) melts. J Appl Polym Sci 20:1077–1093

    Article  CAS  Google Scholar 

  5. Wolkowicz MD (1978) Nucleation and crystal growth in sheared poly(1-butene) melts. J Polym Sci Polym Symp 63:365–382

    Article  CAS  Google Scholar 

  6. Van der Vegt AK, Smit PPA (1967) Crystallization phenomena in flowing polymers. Soc Chem Ind Lond Mongr 26:313–326

    Google Scholar 

  7. Devaux N, Monasse B, Haudin JM, Moldenaers P, Vermant J (2004) Rheooptical study of the early stages of flow enhanced crystallization in isotactic polypropylene. Rheol Acta 43:210–222

    Article  CAS  Google Scholar 

  8. Pogodina NV, Lavrenko VP, Srinivas S, Winter HH (2001) Rheology and structure of isotactic polypropylene near the gel point: quiescent and shear induced crystallization. Polymer 42:9031–9043

    Article  CAS  Google Scholar 

  9. Wereta A, Gogos CG (1971) Crystallization studies on deformed polybutene-1 melts. Polym Eng Sci 11:19–27

    Article  Google Scholar 

  10. Janeschitz-Kriegl H, Ratajski E, Stadlbauer M (2003) Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation. Rheol Acta 42:355–364

    Article  CAS  Google Scholar 

  11. Janeschitz-Kriegl H, Ratajski E (2005) Kinetics of polymer crystallization under processing conditions: transformation of dormant nuclei by the action of flow. Polymer 46:3856–3870

    Article  CAS  Google Scholar 

  12. Monasse B (1992) Polypropylene nucleation on a glass fiber after melt shearing. Mater Sci 27:6047–6052

    Article  CAS  Google Scholar 

  13. Kantz MR, Newman HD, Stigale FH (1972) The skin-core morphology and structure properties relationship in injection molded polypropylene. J Appl Polym Sci 16:1249–1260

    Article  CAS  Google Scholar 

  14. Mencik Z, Fitchmun DR (1973) Texture in injection molded polypropylene. J Polym Sci Polym Phys Ed 11:973–989

    CAS  Google Scholar 

  15. Tadmor Z (1974) Molecular orientation in injection molding. J Appl Polym Sci 18:1753–1772

    Article  CAS  Google Scholar 

  16. Liedauer S, Eder G, Janeschitz-Kriegl H, Jerschow P, Geymayer W, Ingolic E (1993) On the kinetics of shear induced crystallization in polypropylene. Int Polym Proc 8:236–244

    CAS  Google Scholar 

  17. Kumaraswamy G, Verma RK, Kornfield JA (1999) A novel flow apparatus for investigating shear-enhanced crystallization and structure development in semicrystalline polymers. Rev Sci Instrum 70:2097–2104

    Article  CAS  Google Scholar 

  18. Flory PJ (1947) Thermodynamics of crystallization in high polymers. J Chem Phys 15:397–408

    Article  CAS  Google Scholar 

  19. Gaylord RJ, Lohse DJ (1976) Morphological changes during oriented polymer crystallization. Polym Eng Sci 16:163–167

    Article  CAS  Google Scholar 

  20. Eder G, Janeschitz-Kriegl H, Liedauer S (1990) Crystallization processes in quiescent and moving polymer melts under heat transfer conditions. Progr Polym Sci 15(629–714):678

    Google Scholar 

  21. Janeschitz-Kriegl H (1983) Polymer melt rheology and flow birefringence. Springer, Berlin, pp 46, 63, 113, 146, 175

    Google Scholar 

  22. Wales JLS, Philippoff W (1973) Anisotropy of simple shearing flow. Rheol Acta 12:25–34

    Article  CAS  Google Scholar 

  23. Bandrup J, Immergut EH (eds) (1975) Polymer Handbook, 2nd edn. Wiley, New York, p V-16

    Google Scholar 

  24. Münstedt H, Laun HM (1979) Elongational behavior of a low density polyethylene melt. II. Transient behavior in constant stretching rate and tensile creep experiments. Comparison with shear data. Temperature dependence of the elongational properties. Rheol Acta 18:492–504

    Article  Google Scholar 

  25. Wales JLS (1976) The application of flow birefringence to rheological studies of polymer melts. Doctoral thesis, Delft University Press

    Google Scholar 

  26. Brochard-Wyart F, de Gennes PG (1988) Ségrègration par traction dans un homopolymere. CR Acad Sci Paris II 306:699–702

    CAS  Google Scholar 

  27. Eder G, Janeschitz-Kriegl H (1997) Processing of polymers 5: Crystallization. Mater Sci Technol 18:269–342

    CAS  Google Scholar 

  28. Boon J, Challa G, Van Krevelen DW (1968) Crystallization kinetics of isotactic polystyrene II: influence of thermal history on number of nuclei. J Polym Sci A-2 6:1835–1851

    Article  CAS  Google Scholar 

  29. Van Krevelen DW (1978) Crystallinity of polymers and the means to influence the crystallization process. Chimia 32:279–294

    Google Scholar 

  30. Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, Amsterdam, p 592

    Google Scholar 

  31. Keller A, Kolnaar HWH (1997) Processing of polymers 4: flow-induced orientation and structure formation. Mater Sci Technol 18:189–268

    CAS  Google Scholar 

  32. Mandelkern L (2004) Crystallization of Polymers, vol 2, 2nd edn. Cambridge University Press, Cambridge, p 372

    Google Scholar 

  33. Eder G, Janeschitz-Kriegl H, Krobath G (1989) Shear induced crystallization, a relaxation phenomenon in polymer melts. Progr Colloid Polym Sci 80:1–7

    Article  CAS  Google Scholar 

  34. De Gennes PG (1982) Kinetics of diffusion controlled processes in dense polymer systems. II Effect of entanglements. J Chem Phys 76:3322–3326

    Article  Google Scholar 

  35. Doi M, Edwards SF (1986) The theory of polymer dynamics. Claredon, Oxford

    Google Scholar 

  36. Liedauer S, Eder G, Janeschitz-Kriegl H (1995) On the limitations of shear induced crystallization in polypropylene melts. Int Polym Proc 10:243–250

    CAS  Google Scholar 

  37. Kumaraswamy G, Verma RK, Issian AM, Wang P, Kornfield JA, Yeh F, Hsiao BS, Olley RH (2000) Shear-enhanced crystallization in isotactic polypropylene part 2. Analysis of the formation of the oriented “skin”. Polymer 41:8931–8940

    Article  CAS  Google Scholar 

  38. Kumaraswamy G, Issian AM, Kornfield JA (1999) Shear enhanced crystallization in isotactic polypropylene. 1. Correspondence between in situ rheo-optics and ex situ structure determination. Macromolecules 32:7537–7547

    Article  CAS  Google Scholar 

  39. Williams ML, Landel RF, Ferry JD (1955) Temperature dependence of relaxation mechanisms in amorphous polymers and other glass forming liquids. J Am Chem Soc 77:3701–3707

    Article  CAS  Google Scholar 

  40. Kumaraswamy G, Kornfield JA, Yeh F, Hsiao BS (2002) Shear-enhanced crystallization in isotactic polypropylene. 3. Evidence of a kinetic pathway to nucleation. Macromolecules 35:1762–1769

    Article  CAS  Google Scholar 

  41. Seki M, Thurman DW, Oberhauser JP, Kornfield JA (2002) Shear-mediated crystallization of isotactic polypropylene: The role of long-chain chain overlap. Macromolecules 35:2583–2594

    Article  CAS  Google Scholar 

  42. De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  43. Jeffrey GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond 102:161–179

    Article  Google Scholar 

  44. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1, 2nd edn. Wiley, New York, p 171

    Google Scholar 

  45. Stadlbauer M, Janeschitz-Kriegl H, Lipp M, Eder G, Forstner R (2004) Extensional rheometer for creep flow at high tensile stress. Part I. Description and validation. J Rheol 48:611–629

    Article  CAS  Google Scholar 

  46. Stadlbauer M, Janeschitz-Kriegl H, Eder G, Ratajski E (2004) New extensional rheometer for creep flow at high tensile stress. Part II. Flow induced nucleation for the crystallization of iPP. J Rheol 48:631–639

    Article  CAS  Google Scholar 

  47. Eder G, Janeschitz-Kriegl H, Ratajski E (2006) Towards the prediction of structure development in injection molded semicrystalline polymers. In: Greener J, Wimberger-Friedl R (eds) Precision injection molding. Carl Hanser, Munich, pp 137–152

    Google Scholar 

  48. Kanaya T, Takayama Y, Ogino Y, Matsuba G, Nishida K (2007) In: Reiter G, Strobl G (eds) Progress in understanding of polymer crystallization. Springer, Berlin, pp 87–96

    Google Scholar 

  49. Janeschitz-Kriegl H, Wimberger-Friedl R, Krobath G, Liedauer S (1987) On the formation of layer structures in plastic parts (in German). Kautschuk + Gummi Kunststoffe 40:301–307

    CAS  Google Scholar 

  50. Jerschow P, Janeschitz-Kriegl H (1997) The role of long molecules and nucleation agents in shear induced crystallization of isotactic polypropylenes. Int Polym Proc 12:72–77

    CAS  Google Scholar 

  51. Marand H, Xu J, Srinivas S (1998) Determination of the equilibrium melting temperature of polymer crystals: Linear and non-linear Hoffman-Weeks extrapolation. Macromolecules 31:8219–8229

    Article  Google Scholar 

  52. Braun J, Wippel H, Eder G, Janeschitz-Kriegl H (2003) Industrial solidification processes in polybutene-1. Part II-Influence of shear flow. Polym Eng Sci 43:188–203

    Article  CAS  Google Scholar 

  53. Janeschitz-Kriegl H, Eder G (2007) Shear induced crystallization, a relaxation phenomenon in polymer melts: a recollection. J Macromol Sci B 46:1–11

    Article  Google Scholar 

  54. Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, Amsterdam, p 469

    Google Scholar 

  55. Wimberger-Friedl R (1996) Molecular orientation in polycarbonate induced by cooling stress. Int Polym Proc 11:373–382

    CAS  Google Scholar 

  56. Alfonso GC (1999) Formation of cylindritic morphology in melt-sheared it-polybutene-1. Polym Mater Sci Eng 81:330–331

    CAS  Google Scholar 

  57. Alfonso GC, Azzurri F (2001) Shear enhanced polymer crystal nucleation: interaction between molecular characteristics and flow. Conference on flow induced crystallization of polymers, Salerno

    Google Scholar 

  58. Azzurri F, Alfonso GC (2005) Lifetime of shear-induced crystal nucleation precursors. Macromolecules 38:1723–1728

    Article  CAS  Google Scholar 

  59. Varga J, Karger-Kocsis J (1996) Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci B Polym Phys 34:657–670

    Article  CAS  Google Scholar 

  60. Garcia Gutierrez MC, Alfonso GC, Rickel C, Azzurri F (2004) Spatially resolved flow-induced crystallization precursors in isotactic polystyrene by simultaneous small- and wide-angle X-ray microdifraction. Macromolecules 37:478–485

    Article  Google Scholar 

  61. Al-Hussein M, Strobl G (2002) The melting line, the crystallization line and the equilibrium melting temperature of isotactic polystyrene. Macromolecules 35:1672–1676

    Article  CAS  Google Scholar 

  62. Azzurri F, Alfonso GC (2008) Insights on formation and relaxation of shear-induced nucleation precursors in isotactic polystyrene. Macromolecules 41:1377–1383

    Article  CAS  Google Scholar 

  63. Stratton RA (1966) The dependence of non-Newtonian viscosity on molecular weight for ‘monodisperse’ polystyrenes. J Colloid Interf Sci 22:517–530

    Article  CAS  Google Scholar 

  64. Monasse B (1995) Nucleation and anisotropic crystalline growth of polyethylene under shear. J Mater Sci 30:5002–5012

    Article  CAS  Google Scholar 

  65. Lippits DR, Rastogi S, Höhne GWH (2006) Melting kinetics of polymers. Phys Rev Lett 96:218303-1–218303-4

    Article  Google Scholar 

  66. Lippits DR, Rastogi S, Höhne GWH, Mezari B, Magusin PCMM (2007) Heterogeneous distribution of entanglements in the polymer melt and its influence on crystallization. Macromolecules 40:1004–1010

    Article  CAS  Google Scholar 

  67. Lagasse RR, Maxwell B (1976) An experimental study of the kinetics of polymer crystallization during shear flow. Polym Eng Sci 16:189–199

    Article  CAS  Google Scholar 

  68. Hadinata C, Gabriel C, Ruellmann M, Laun HM (2005) Comparison of shear-induced crystallization behavior of PB-1 samples with different molecular weight distribution. J Rheol 49:327–349

    Article  CAS  Google Scholar 

  69. Hadinata C, Gabriel C, Ruellmann M, Kao N, Laun HM (2006) Shear-induced crystallization of PB-1 up to processing relevant shear rates. Rheol Acta 45:539–546

    Article  CAS  Google Scholar 

  70. Mackley MR, Wannaborworn S, Gao P, Zhan F (1999) The optical microscopy of sheared liquids using a newly developed optical stage. J Microsc Anal 69:25–27

    Google Scholar 

  71. Chen Q, Fan Y, Zheng Q (2006) Rheological scaling and modeling of shear-enhanced crystallization rate of polypropylene. Rheol Acta 46:305–316

    Article  CAS  Google Scholar 

  72. Janeschitz-Kriegl H, Eder G, Stadlbauer M, Ratajski E (2005) A thermodynamic frame for the kinetics of polymer crystallization under processing conditions (in English). Monatshefte für Chemie 136:1119–1137

    Article  CAS  Google Scholar 

  73. Braun J, Pillichshammer D, Eder G, Janeschitz-Kriegl H (2003) Industrial solidification processes in polybutene-1. Part I – Quiescent melts. Polym Eng Sci 43:180–187

    Article  CAS  Google Scholar 

  74. Hadinata C, Boos D, Gabriel C, Wassner E, Rüllmann M, Laun HM (2007) Elongation-induced crystallization of high molecular weight isotactic polybutene-1 melt compared to shear-induced crystallization. J Rheol 51:195–215

    Article  CAS  Google Scholar 

  75. Zülle B, Linster JJ, Meissner J, Hürlimann HP (1987) Deformation hardening and thinning in both elongation and shear of a low density polyethylene melt. J Rheol 31:583–598

    Article  Google Scholar 

  76. Okamoto M, Kubo H, Kotaka T (1998) Elongational flow-induced crystallization and structure development in supercooled poly(ethylene naphthalate). Macromolecules 31:4223–4231

    Article  CAS  Google Scholar 

  77. Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21

    Article  CAS  Google Scholar 

  78. Samon JM, Schultz JM, Hsiao BS (2002) Structure development in the early stages of crystallization during melt spinning. Polymer 43:1873–1875

    Article  CAS  Google Scholar 

  79. Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, Shibayama M, Kornfield JA (2007) Molecular basis of the Shish-Kebab morphology in polymer crystallization. Science 316:1014–1017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Janeschitz-Kriegl .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Janeschitz-Kriegl, H. (2010). Flow Induced Processes Causing Oriented Crystallization. In: Crystallization Modalities in Polymer Melt Processing. Springer, Vienna. https://doi.org/10.1007/978-3-211-87627-5_3

Download citation

Publish with us

Policies and ethics