Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 496))

Abstract

This paper summarizes a set of lectures given on the hydrodynamics and cavitation of pumps presented at CISM in July, 2005. The lectures are based on my book entitled “Hydrodynamics of Pumps” (Brennen 1994) published jointly by Concepts ETI and Oxford University Press and available on the internet at http://caltechbook.library.caltech.edu/22/01/pumps.htm. The author is very grateful to Concepts ETI for permission to utilize large fractions of that book in this summary of the lectures. Readers who wish to explore the subject matter in more detail are encouraged to consult the original book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Abramson, H.N. (1969). Hydroelasticity: a review of hydrofoil flutter. Appl. Mech. Rev., 22, No. 2, 115–121.

    Google Scholar 

  • Acosta, A.J. (1955). A note on partial cavitation of flat plate hydrofoils. Calif. Inst. of Tech. Hydro. Lab. Rep. E-19.9.

    Google Scholar 

  • Acosta, A.J. (1958). An experimental study of cavitating inducers. Proc. Second ONR Symp. on Naval Hydrodyn., ONR/ACR-38, 533–557.

    Google Scholar 

  • Acosta, A.J. (1973). Hydrofoils and hydrofoil craft. Ann. Rev. Fluid Mech., 5, 161–184.

    Google Scholar 

  • Acosta, A.J. and Bowerman, R.D. (1957). An experimental study of centrifugal pump impellers. Trans. ASME, 79, 1821–1839.

    Google Scholar 

  • Acosta, A.J. and DeLong, R.K. (1971). Experimental investigation of non-steady forces on hydrofoils oscillating in heave. Proc. IUTAM Symp. on non-steady flow of water at high speeds, Leningrad, USSR, 95–104.

    Google Scholar 

  • Acosta, A.J. and Hollander, A. (1959). Remarks on cavitation in turbomachines. Calif. Inst. of Tech. Rep. E-79.3.

    Google Scholar 

  • Acosta, A.J. and Parkin, B.R. (1975). Cavitation inception—a selective review. J. Ship Res., 19, No. 4, 193–205.

    Google Scholar 

  • Adamczyk, J.J. (1975). The passage of a distorted velocity field through a cascade of airfoils. Proc. Conf. on Unsteady Phenomena in Turbomachinery, AGARD Conf. Proc. No. 177.

    Google Scholar 

  • Amies, G. and Greene, B. (1977). Aircraft hydraulic systems dynamic analysis. Volume IV. Frequency response (HSFR). Wright-Patterson Air Force Base Technical Report AFAPL-TR-76-43, IV.

    Google Scholar 

  • Anderson, D.A., Blade, R.J. and Stevens, W. (1971). Response of a radial-bladed centrifugal pump to sinusoidal disturbances for non-cavitating flow. NASA TN D-6556.

    Google Scholar 

  • Anderson, H.H. (undated) Centrifugal pumps. The Trade and Technical Press Ltd., Crown House, Morden, England.

    Google Scholar 

  • Anderson, H.H. (1955). Modern developments in the use of large single-entry centrifugal pumps. Proc. Inst. Mech. Eng., 169, 141–161.

    Google Scholar 

  • Arakeri, V.H. (1979). Cavitation inception. Proc. Indian Acad. Sci., C2, Part 2, 149–177.

    Google Scholar 

  • Arndt, R.E.A. (1981). Cavitation in fluid machinery and hydraulic structures. Ann. Rev. Fluid Mech., 13, 273–328.

    Google Scholar 

  • Badowski, H.R. (1969). An explanation for instability in cavitating inducers. Proc. 1969 ASME Cavitation Forum, 38–40.

    Google Scholar 

  • Badowski, H.R. (1970). Inducers for centrifugal pumps. Worthington Canada, Ltd., Internal Report.

    Google Scholar 

  • Balje, O.E. (1981). Turbomachines. A guide to design, selection and theory. John Wiley and Sons, New York.

    Google Scholar 

  • Batchelor, G.K. (1967). An introduction to fluid dynamics. Cambridge Univ. Press.

    Google Scholar 

  • Biesheuvel, A. and van Wijngaarden, L. (1984). Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J. Fluid Mech., 148, 301–318.

    MATH  Google Scholar 

  • Birkhoff, G. and Zarantonello, E.M. (1957). Jets, wakes and cavities. Academic Press, NY.

    MATH  Google Scholar 

  • Braisted, D.M. (1979). Cavitation induced instabilities associated with turbomachines. Ph.D. Thesis, Calif. Inst. of Tech.

    Google Scholar 

  • Braisted, D.M. and Brennen, C.E. (1980). Auto-oscillation of cavitating inducers. In Polyphase Flow and Transport Technology, (ed: R.A. Bajura), ASME Publ., New York, 157–166.

    Google Scholar 

  • Brennen, C.E. (1973). The dynamic behavior and compliance of a stream of cavitating bubbles. ASME J. Fluids Eng., 95, 533–542.

    Google Scholar 

  • Brennen, C.E. (1978). Bubbly flow model for the dynamic characteristics of cavitating pumps. J. Fluid Mech., 89, Part 2, 223–240.

    Google Scholar 

  • Brennen, C.E. (1994). Hydrodynamics of pumps. Concepts ETI and Oxford Univ. Press.

    Google Scholar 

  • Brennen, C.E. (1995). Cavitation and bubble dynamics. Oxford Univ. Press.

    Google Scholar 

  • Brennen, C.E. and Acosta, A.J. (1973). Theoretical, quasistatic analyses of cavitation compliance in turbopumps. J. of Spacecraft and Rockets, 10, No.3, 175–180.

    Google Scholar 

  • Brennen, C.E. and Acosta, A.J. (1975). The dynamic performance of cavitating turbopumps. Proc. Fifth Conference on Fluid Machinery, Akademiai Kiado, Budapest, Hungary, 121–136.

    Google Scholar 

  • Brennen, C.E. and Acosta, A.J. (1976). The dynamic transfer function for a cavitating inducer. ASME J. Fluids Eng., 98, 182–191.

    Google Scholar 

  • Brennen, C.E. and Braisted, D.M. (1980). Stability of hydraulic systems with focus on cavitating pumps. Proc. 10th Symp. of IAHR, Tokyo, 255–268.

    Google Scholar 

  • Brennen, C.E., Oey, K., and Babcock, C.D. (1980). On the leading edge flutter of cavitating hydrofoils. J. Ship Res., 24, No. 3, 135–146.

    Google Scholar 

  • Brennen, C.E., Meissner, C., Lo, E.Y., and Hoffman, G.S. (1982). Scale effects in the dynamic transfer functions for cavitating inducers. ASME J. Fluids Eng., 104, 428–433.

    Google Scholar 

  • Breugelmans, F.A.E. and Sen, M. (1982). Prerotation and fluid recirculation in the suction pipe of centrifugal pumps. Proc. 11th Int. Pump Symp., Texas A&M Univ., 165–180.

    Google Scholar 

  • Brown, F.T. (1967). A unified approach to the analysis of uniform one-dimensional distributed systems. ASME J. Basic Eng., 89, No. 6, 423–432.

    Google Scholar 

  • Busemann, A. (1928). Das Förderhöhenverhältnis radialer Kreiselpumpen mit logarithmischspiraligen Schaufeln. Z. angew. Math. u. Mech., 8, 372.

    MATH  Google Scholar 

  • Ceccio, S.L. and Brennen, C.E. (1991). Observations of the dynamics and acoustics of travelling bubble cavitation. J. Fluid Mech., 233, 633–660. Corrigenda, 240, 686.

    Google Scholar 

  • Chahine, G.L. (1982). Cloud cavitation theory. Proc. 14th ONR Symp. on Naval Hydrodynamics, 165–194.

    Google Scholar 

  • Chamieh, D. (1983). Forces on a whirling centrifugal pump-impeller. Ph.D. Thesis, Calif. Inst. of Tech., and Div. of Eng. and App. Sci. Report No. E249.2.

    Google Scholar 

  • Chamieh, D.S., Acosta, A.J., Brennen, C.E., and Caughey, T.K. (1985). Experimental measurements of hydrodynamic radial forces and stiffness matrices for a centrifugal pump-impeller. ASME J. Fluids Eng., 107, No. 3, 307–315.

    Google Scholar 

  • Chivers, T.C. (1969). Cavitation in centrifugal pumps. Proc. Inst. Mech. Eng., 184, Part I, No. 2, 37–68.

    Google Scholar 

  • Constant, H. (1939). Performance of cascades of aerofoils. Royal Aircraft Est. Note No. E3696 and ARC Rep. No. 4155.

    Google Scholar 

  • Cooper, P. (1967). Analysis of single-and two-phase flows in turbo-pump inducers. ASME J. Eng. Power, 89, 577–588.

    Google Scholar 

  • Cumpsty, N. A. (1977). Review—a critical review of turbomachinery noise. ASME J. Fluids Eng., 99, 278–293.

    Google Scholar 

  • d’Agostino, L. and Brennen, C.E. (1983). On the acoustical dynamics of bubble clouds. ASME Cavitation and Multiphase Flow Forum, 72–75.

    Google Scholar 

  • d’Agostino, L., Brennen, C.E., Acosta, A.J. (1988). Linearized dynamics of two-dimensional bubbly and cavitating flows over slender surfaces. J. Fluid Mech., 192, 485–509.

    MathSciNet  Google Scholar 

  • d’Agostino, L. and Brennen, C.E. (1989). Linearized dynamics of spherical bubble clouds. J. Fluid Mech., 199, 155–176.

    MATH  MathSciNet  Google Scholar 

  • Dean, R. C. (1959). On the necessity of unsteady flow in fluid machines. ASME J. Basic Eng., 81, 24–28.

    Google Scholar 

  • del Valle, J., Braisted, D.M., and Brennen, C.E. (1992). The effects of inlet flow modification on cavitating inducer performance. ASME J. Turbomachinery, 114, 360–365.

    Google Scholar 

  • De Siervi, F., Viguier, H.C., Greitzer, E.M., and Tan, C.S. (1982). Mechanisms of inlet-vortex formation. J. Fluid Mech., 124, 173–207.

    Google Scholar 

  • Dixon, S.L. (1978). Fluid mechanics, thermodynamics of turbomachinery. Pergamon Press.

    Google Scholar 

  • Dussourd, J. L. (1968). An investigation of pulsations in the boiler feed system of a central power station. ASME J. Basic Eng., 90, 607–619.

    Google Scholar 

  • Eckardt, D. (1976). Detailed flow investigations with a high-speed centrifugal compressor impeller. ASME J. Fluids Eng., 98, 390–420.

    Google Scholar 

  • Ek, B. (1957). Technische Strömungslehre. Springer-Verlag.

    Google Scholar 

  • Emmons, H.W., Pearson, C.E., and Grant, H.P. (1955). Compressor surge and stall propagation. Trans. ASME, 79, 455–469.

    Google Scholar 

  • Emmons, H.W., Kronauer, R.E., and Rockett, J.A. (1959). A survey of stall propagation—experiment and theory. ASME J. Basic Eng., 81, 409–416.

    Google Scholar 

  • Fanelli, M. (1972). Further considerations on the dynamic behaviour of hydraulic turbomachinery. Water Power, June 1972, 208–222.

    Google Scholar 

  • Ferguson, T.B. (1963). The centrifugal compressor stage. Butterworth, London.

    Google Scholar 

  • Fischer, K. and Thoma, D. (1932). Investigation of the flow conditions in a centrifugal pump. Trans. ASME, Hydraulics, 54, 141–155.

    Google Scholar 

  • Fitzpatrick, H.M. and Strasberg, M. (1956). Hydrodynamic sources of sound. Proc. First ONR Symp. on Naval Hydrodynamics, 241–280.

    Google Scholar 

  • Franz, R., Acosta, A.J., Brennen, C.E. and Caughey, T.K. (1989). The rotordynamic forces on a centrifugal pump impeller in the presence of cavitation. Proc. ASME Symp. Pumping Machinery, FED-81, 205–212.

    Google Scholar 

  • Franz, R., Acosta, A.J., Brennen, C.E. and Caughey, T.K. (1990). The rotordynamic forces on a centrifugal pump impeller in the presence of cavitation. ASME J. Fluids Eng., 112, 264–271.

    Google Scholar 

  • Fung, Y.C. (1955). An introduction to the theory of aeroelasticity. John Wiley and Sons.

    Google Scholar 

  • Furuya, O. and Acosta, A.J. (1973). A note on the calculation of supercavitating hydrofoils with rounded noses. ASME J. Fluids Eng., 95, 222–228.

    Google Scholar 

  • Furuya, O. (1974). Supercavitating linear cascades with rounded noses. ASME J. Basic Eng., Series D, 96, 35–42.

    Google Scholar 

  • Gongwer, C. (1941). A theory of cavitation flow in centrifugal-pump impellers. Trans. ASME, 63, 29–40.

    Google Scholar 

  • Greitzer, E.M. (1976). Surge and rotating stall in axial flow compressors. Part I: Theoretical compression system model. Part II: Experimental results and comparison with theory. ASME J. Eng. for Power, 98, 190–211.

    Google Scholar 

  • Greitzer, E.M. (1981). The stability of pumping systems—the 1980 Freeman Scholar Lecture. ASME J. Fluids Eng., 103, 193–242.

    Google Scholar 

  • Grist, E. (1974). NPSH requirements for avoidance of unacceptable cavitation erosion in centrifugal pumps. Proc. I.Mech.E. Conf. on Cavitation, 153–163.

    Google Scholar 

  • Gross, L.A. (1973). An experimental investigation of two-phase liquid oxygen pumping. NASA TN D-7451.

    Google Scholar 

  • Guinard, P., Fuller, T. and Acosta, A.J. (1953). Experimental study of axial flow pump cavitation. Calif. Inst. of Tech. Hydro. Lab. Report, E-19.3.

    Google Scholar 

  • Ham, N.D. (1968). Aerodynamic loading on a two-dimensional airfoil during dynamic stall. AIAA J., 6, 1927–1934.

    MATH  Google Scholar 

  • Hartmann, M.J. and Soltis, R.F. (1960). Observation of cavitation in a low hub-tip ratio axial flow pump. Proc. Gas Turbine Power and Hydraulic Conf., ASME Paper No. 60-HYD-14.

    Google Scholar 

  • Henderson and Tucker. (1962). Performance investigation of some high speed pump inducers. R.P.E. Tech. Note 214. Reported by Janigro and Ferrini (1973) but not located by the author.

    Google Scholar 

  • Hennyey, Z. (1962). Linear electric circuits. Pergamon Press.

    Google Scholar 

  • Hergt, P. and Benner, R. (1968). Visuelle Untersuchung der Strömung in Leitrad einer Radialpumpe. Schweiz. Banztg., 86, 716–720.

    Google Scholar 

  • Hobson, D. E. and Marshall, A. (1979). Surge in centrifugal pumps. Proc. 6th Conf. on Fluid Machinery, Budapest, 475–483.

    Google Scholar 

  • Holl, J.W. (1969). Limited cavitation. Cavitation State of Knowledge, ASME, 26–63.

    Google Scholar 

  • Horlock, J.H. (1973). Axial flow compressors. Robert E. Krieger Publ. Co., New York.

    Google Scholar 

  • Horlock, J.H. and Lakshminarayana, B. (1973). Secondary flows: theory, experiment and application in turbomachinery aerodynamics. Ann. Rev. Fluid Mech., 5, 247–279.

    Google Scholar 

  • Howard, J.H.G. and Osborne, C. (1977). A centrifugal compressor flow analysis employing a jet-wake passage model. ASME J. Fluids Eng., 99, 141–147.

    Google Scholar 

  • Howell, A.R. (1942). The present basis of axial flow compressor design: Part I—Cascade theory and performance. ARC R and M No. 2095.

    Google Scholar 

  • Hydraulic Institute, New York. (1965). Standards of the Hydraulic Institute (11th edition).

    Google Scholar 

  • Jaeger, C. (1963). The theory of resonance in hydro-power systems, discussion of incidents and accidents occurring in pressure systems. ASME J. Basic Eng., 85, 631–640.

    Google Scholar 

  • Jakobsen, J.K. (1964). On the mechanism of head breakdown in cavitating inducers. ASME J. Basic Eng., 86, 291–304.

    Google Scholar 

  • Jakobsen, J.K. (1971). Liquid rocket engine turbopumps. NASA SP 8052.

    Google Scholar 

  • Janigro, A. and Ferrini, F. (1973). Inducer pumps. In Recent progress in pump research, von Karman Inst. for Fluid Dynamics, Lecture Series 61.

    Google Scholar 

  • Jansen, W. 1964. Rotating stall in a radial vaneless diffuser. ASME J. Basic Eng., 86, 750–758.

    Google Scholar 

  • Japikse, D. (1984). Turbomachinery diffuser design technology. Concepts ETI, Inc., Norwich, VT.

    Google Scholar 

  • Johnston, J.P. and Dean, R.C. (1966). Losses in vaneless diffusers of centrifugal compressors and pumps. ASME J. Eng. for Power, 88, 49–62.

    Google Scholar 

  • Johnson, V.E. and Hsieh, T. (1966). The influence of the trajectories of gas nuclei on cavitation inception. Proc. 6th ONR Symp. on Naval Hydrodynamics, 7–1.

    Google Scholar 

  • Kamijo, K., Shimura, T., and Watanabe, M. (1977). An experimental investigation of cavitating inducer instability. ASME Paper 77-WA/FW-14.

    Google Scholar 

  • Kamijo, K., Shimura, T., and Watanabe, M. (1980). A visual observation cavitating inducer instability. Nat. Aero. Lab. (Japan), Rept. NAL TR-598T.

    Google Scholar 

  • Kamijo, K., Yoshida, M., and Tsujimoto, Y. (1992). Hydraulic and mechanical performance of LE-7 LOX pump inducer. Proc. 28th Joint Propulsion Conf., Paper AIAA-92-3133.

    Google Scholar 

  • Kemp, N. H. and Ohashi, H. (1975). Forces on unstaggered airfoil cascades in unsteady in-phase motion with applications to harmonic oscillation. Proc. Symp. on Unsteady Aerodynamics, Tuscon, Ariz., 793–826.

    Google Scholar 

  • Kemp, N. H. and Sears, W. R. (1955). The unsteady forces due to viscous wakes in turbomachines. J. Aero Sci., 22, No.7, 478–483.

    MATH  Google Scholar 

  • Kermeen, R.W. (1956). Water tunnel tests of NACA 4412 and Walchner Profile 7 hydrofoils in noncavitating and cavitating flows. Calif. Inst. of Tech., Hydrodynamics Lab. Rep. 47-5.

    Google Scholar 

  • Knapp, R.T., Daily, J.W., and Hammitt, F.G. (1970). Cavitation. McGraw-Hill, New York.

    Google Scholar 

  • König, E. (1922). Potentialströmung durch Gitter. Z. angew. Math. u. Mech., 2, 422.

    Google Scholar 

  • Lazarkiewicz, S. and Troskolanski, A.T. (1965). Pompy wirowe. (Impeller pumps.) Translated from Polish by D.K.Rutter. Publ. by Pergamon Press.

    Google Scholar 

  • Lee, C.J.M. (1966). Written discussion in Proc. Symp. on Pump Design, Testing and Operation, Natl. Eng. Lab., Scotland, 114–115.

    Google Scholar 

  • Lieblein, S., Schwenk, F.C., and Broderick, R.L. (1953). Diffusion factor for estimating losses and limiting blade loadings in axial-flow-compressor blade elements. NACA RM E53D01.

    Google Scholar 

  • Lieblein, S. (1965). Experimental flow in two-dimensional cascades. Aerodynamic design of axial flow compressors, NASA SP-36, 183–226.

    Google Scholar 

  • Lenneman, E. and Howard, J. H. G. (1970). Unsteady flow phenomena in centrifugal impeller passages. ASME J. Eng. for Power, 92-1, 65–72.

    Google Scholar 

  • Lush, P.A. and Angell, B. (1984). Correlation of cavitation erosion and sound pressure level. ASME J. Fluids Eng., 106, 347–351.

    Google Scholar 

  • Makay, E. (1980). Centrifugal pump hydraulic instability. Electric Power Res. Inst. Rep. EPRI CS-1445.

    Google Scholar 

  • Makay, E. and Szamody, O. (1978). Survey of feed pump outages. Electric Power Res. Inst. Rep. FP-754.

    Google Scholar 

  • Mansell, C.J. (1974). Impeller cavitation damage on a pump operating below its rated discharge. Proc. of Conf. on Cavitation, Inst. of Mech. Eng., 185–191.

    Google Scholar 

  • Martin, M. (1962). Unsteady lift and moment on fully cavitating hydrofoils at zero cavitation number. J. Ship Res., 6, No.1, 15–25.

    Google Scholar 

  • McCroskey, W. J. (1977). Some current research in unsteady fluid dynamics—the 1976 Freeman Scholar Lecture. ASME J. Fluids Eng., 99, 8–38.

    Google Scholar 

  • McNulty, P.J. and Pearsall, I.S. (1979). Cavitation inception in pumps. ASME Int. Symp. on Cavitation Inception, 163–170.

    Google Scholar 

  • Mikolajczak, A. A., Arnoldi, R. A., Snyder, L. E., and Stargardter, H. (1975). Advances in fan and compressor blade flutter analysis and predictions. J. Aircraft, 12, No.4, 325–332.

    Google Scholar 

  • Miller, C.D. and Gross, L.A. (1967). A performance investigation of an eight-inch hubless pump inducer in water and liquid nitrogen. NASA TN D-3807.

    Google Scholar 

  • Mimura, Y. (1958). The flow with wake past an oblique plate. J. Phys. Soc. Japan, 13, 1048–1055.

    MathSciNet  Google Scholar 

  • Moore, R.D. and Meng, P.R. (1970a). Thermodynamic effects of cavitation of an 80.6° helical inducer operated in hydrogen. NASA TN D-5614.

    Google Scholar 

  • Moore, R.D. and Meng, P.R. (1970b). Effect of blade leading edge thickness on cavitation performance of 80.6° helical inducers in hydrogen. NASA TN D5855.

    Google Scholar 

  • Murai, H. (1968). Observations of cavitation and flow patterns in an axial flow pump at low flow rates (in Japanese). Mem. Inst. High Speed Mech., Tohoku Univ., 24, No.246, 315–333.

    Google Scholar 

  • NASA. (1970). Prevention of coupled structure-propulsion instability. NASA SP-8055.

    Google Scholar 

  • Natanzon, M.S., Bl’tsev, N.E., Bazhanov, V.V., and Leydervarger, M.R. (1974). Experimental investigation of cavitation-induced oscillations of helical inducers. Fluid Mech., Soviet Res., 3, No.1, 38–45.

    Google Scholar 

  • Ng, S.L. and Brennen, C.E. (1978). Experiments on the dynamic behavior of cavitating pumps. ASME J. Fluids Eng., 100, No. 2, 166–176.

    Google Scholar 

  • Pearsall, I.S. (1963). Supercavitation for pumps and turbines. Engineering (GB), 196(5081), 309–311.

    Google Scholar 

  • Ohashi, H. (1968). Analytical and experimental study of dynamic characteristics of turbopumps. NASA TN D-4298.

    Google Scholar 

  • Okamura, T. and Miyashiro, H. (1978). Cavitation in centrifugal pumps operating at low capacities. ASME Symp. on Polyphase Flow in Turbomachinery, 243–252.

    Google Scholar 

  • Omta, R. (1987). Oscillations of a cloud of bubbles of small and not so small amplitude. J. Acoust. Soc. Amer., 82, 1018–1033.

    Google Scholar 

  • Oshima, M. and Kawaguchi, K. (1963). Experimental study of axial and mixed flow pumps. Proc. IAHR Symp. on Cavitation and Hydraulic Machinery, Sendai, Japan, 397–416.

    Google Scholar 

  • Parkin, B.R. (1952). Scale effects in cavitating flow. Ph.D. Thesis, Calif. Inst. of Tech., Pasadena.

    Google Scholar 

  • Parkin, B.R. (1958). Experiments on circular-arc and flat plate hydrofoils. J. Ship Res., 1, 34–56.

    Google Scholar 

  • Parkin, B.R. (1962). Numerical data on hydrofoil reponse to non-steady motions at zero cavitation number. J. Ship Res., 6, 40–42.

    Google Scholar 

  • Paynter, H.M. (1961). Analysis and design of engineering systems. MIT Press.

    Google Scholar 

  • Pearsall, I.S. (1963). Supercavitation for pumps and turbines. Engineering (GB), 196(5081), 309–311.

    Google Scholar 

  • Pearsall, I.S. (1966–67). Acoustic detection of cavitation. Proc. Inst. Mech. Eng., 181, No. 3A.

    Google Scholar 

  • Pearsall, I.S. (1978). Off-design performance of pumps. von Karman Inst. for Fluid Dynamics, Lecture Series 1978-3.

    Google Scholar 

  • Peck, J.F. (1966). Written discussion in Proc. Symp. on Pump Design, Testing and Operation, Nat. Eng. Lab., Scotland, 256–273.

    Google Scholar 

  • Pfleiderer, C. (1932). Die Kreiselpumpen. Julius Springer, Berlin.

    Google Scholar 

  • Pipes, L.A. (1940). The matrix theory for four terminal networks. Phil. Mag., 30, 370.

    MathSciNet  Google Scholar 

  • Pipes, L.A. (1963). Matrix methods for engineering. Prentice-Hall, Inc., NJ.

    MATH  Google Scholar 

  • Platzer, M. F. (1978). Unsteady flows in turbomachines—a review of current developments. AGARD Rept. CP-227.

    Google Scholar 

  • Plesset, M.S. (1949). The dynamics of cavitation bubbles. Trans. ASME, J. Appl. Mech., 16, 228–231.

    Google Scholar 

  • Rohatgi, U.S. (1978). Pump model for two-phase transient flow. In Polyphase Flow in Turbomachinery (eds: C.E. Brennen, P. Cooper and P.W. Runstadler, Jr.), ASME, 101–120.

    Google Scholar 

  • Rosenmann, W. (1965). Experimental investigations of hydrodynamically induced shaft forces with a three bladed inducer. Proc. ASME Symp. on Cavitation in Fluid Machinery, 172–195.

    Google Scholar 

  • Roudebush, W.H. (1965). Potential flow in two-dimensional cascades. Aerodynamic design of axial flow compressors, NASA SP-36, 101–149.

    Google Scholar 

  • Roudebush, W.H. and Lieblein, S. (1965). Viscous flow in two-dimensional cascades. Aerodynamic design of axial flow compressors, NASA SP-36, 151–181.

    Google Scholar 

  • Rubin, S. (1966). Longitudinal instability of liquid rockets due to propulsion feedback (Pogo). J. Spacecraft and Rockets, 3, No.8, 1188–1195.

    Google Scholar 

  • Ruggeri, R.S. and Moore, R.D. (1969). Method for prediction of pump cavitation performance for various liquids, liquid temperatures, and rotative speeds. NASA TN D-5292.

    Google Scholar 

  • Sabersky, R.H., Acosta, A.J. and Hauptmann, E.G. (1989). Fluid flow (3rd edition), Chapters 12 and 13. Macmillan Publ. Co.

    Google Scholar 

  • Sack, L.E. and Nottage, H.B. (1965). System oscillations associated with cavitating inducers. ASME J. Basic Eng., 87, 917–924.

    Google Scholar 

  • Salemann, V. (1959). Cavitation and NPSH requirements of various liquids. ASME J. Basic Eng., 81, 167–180.

    Google Scholar 

  • Samoylovich, G.S. (1962). On the calculation of the unsteady flow around an array of arbitrary profiles vibrating with arbitrary phase shift. Prikladnaya Matematika i Mekhanika, No.4.

    Google Scholar 

  • Schorr, B. and Reddy, K.C. (1971). Inviscid flow through cascades in oscillatory and distorted flow. AIAA J., 9, 2043–2050.

    MATH  Google Scholar 

  • Silberman, E. (1959). Experimental studies of supercavitating flow about simple twodimensional bodies in a jet. J. Fluid Mech., 5, 337–354.

    MATH  Google Scholar 

  • Silberman, E. and Song, C.S. (1961). Instability of ventilated cavities. J. Ship Res., 5, 13–33.

    Google Scholar 

  • Sisto, F. (1953). Stall-flutter in cascades. J. Aero. Sci., 20, 598–604.

    Google Scholar 

  • Sisto, F. (1967). Linearized theory of non-stationary cascades at fully stalled or supercavitating conditions. Zeitschrift fur Angewandte Mathematik und Mechanik, 8, 531–542.

    Google Scholar 

  • Sisto, F. (1977). A review of the fluid mechanics of aeroelasticity in turbomachines. ASME J. Fluids Eng., 99, 40–44.

    Google Scholar 

  • Sloteman, D.P., Cooper, P., and Dussourd, J.L. (1984). Control of backflow at the inlets of centrifugal pumps and inducers. Proc. Int. Pump Symp., Texas A&M Univ., 9–22.

    Google Scholar 

  • Song, C.S. (1962). Pulsation of ventilated cavities. J. Ship Res., 5, 8–20

    Google Scholar 

  • Sparks, C.R. and Wachel, J.C. (1976). Pulsations in liquid pumps and piping systems. Proc. 5th Turbomachinery Symp., 55–61.

    Google Scholar 

  • Spraker, W.A. (1965). The effect of fluid properties on cavitation in centrifugal pumps. ASME J. Eng. Power, 87, 309–318.

    Google Scholar 

  • Stahl, H.A. and Stepanoff, A.J. (1956). Thermodynamic aspects of cavitation in centrifugal pumps. Trans. ASME, 78, 1691–1693.

    Google Scholar 

  • Stanitz, J.D. (1952). Some theoretical aerodynamic investigations of impellers in radialand mixed-flow centrifugal compressors. Trans. ASME, 74, 473–497.

    Google Scholar 

  • Stepanoff, A.J. (1948). Centrifugal and axial flow pumps. John Wiley & Sons, Inc.

    Google Scholar 

  • Stepanoff, A.J. (1961). Cavitation in centrifugal pumps with liquids other than water. ASME J. Eng. Power, 83, 79–90.

    Google Scholar 

  • Stepanoff, A.J. (1964). Cavitation properties of liquids. ASME J. Eng. Power, 86, 195–200.

    Google Scholar 

  • Stodola, A. (1927). Steam and gas turbines. Volumes I and II. McGraw-Hill, New York.

    Google Scholar 

  • Strecker, F. and Feldtkeller, R. (1929). Grundlagen der Theorie des allgemeinen Vierpols. Elektrische Nachrichtentechnik, 6, 93.

    Google Scholar 

  • Streeter, V.L. and Wylie, E.B. (1967). Hydraulic transients. McGraw-Hill.

    Google Scholar 

  • Streeter, V.L. and Wylie, E.B. (1974). Waterhammer and surge control. Ann. Rev. Fluid Mech., 6, 57–73.

    Google Scholar 

  • Stripling, L.B. and Acosta, A.J. (1962). Cavitation in turbopumps-Part I. ASME J. Basic Eng., 84, 326–338.

    Google Scholar 

  • Stripling, L.B. (1962). Cavitation in turbopumps-Part II. ASME J. Basic Eng., 84, 339–350.

    Google Scholar 

  • Strub, R.A. (1963). Pressure fluctuations and fatigue stresses in storage pumps and pump-turbines. ASME Paper No. 63-AHGT-11.

    Google Scholar 

  • Sturge, D.P. and Cumpsty, N.A. (1975). Two-dimensional method for calculating separated flow in a centrifugal impeller. ASME J. Fluids Eng., 97, 581–579.

    Google Scholar 

  • Tsujimoto, Y., Imaichi, K., Tomohiro, T., and Gatoo, M. (1986). A two-dimensional analysis of unsteady torque on mixed flow impellers. ASME J. Fluids Eng., 108, No. 1, 26–33.

    Google Scholar 

  • Tsujimoto, Y., Kamijo, K., and Yoshida, Y. (1992). A theoretical analysis of rotating cavitation in inducers. ASME Cavitation and Multiphase Flow Forum, FED 135, 159–166.

    Google Scholar 

  • Tsukamoto, H. and Ohashi, H. (1982). Transient characteristics of centrifugal turbomachines. ASME J. Fluids Eng., 104, No. 1, 6–14.

    Google Scholar 

  • Tulin, M.P. (1953). Steady two-dimensional cavity flows about slender bodies. David Taylor Model Basin Rep. 834.

    Google Scholar 

  • Tulin, M.P. (1964). Supercavitating flows-small perturbation theory. J. Ship Res., 7, No. 3, 16–37.

    MathSciNet  Google Scholar 

  • Tyler, J.M. and Sofrin, T.G. (1962). Axial compressor noise studies. Soc. Automotive Eng., 70, 309–332.

    Google Scholar 

  • Vaage, R.D., Fidler, L.E., and Zehnle, R.A. (1972). Investigation of characteristics of feed system instabilities. Final Rept. MCR-72-107, Martin Marietta Corp., Denver, Col.

    Google Scholar 

  • van der Braembussche, R. (1982). Rotating stall in vaneless diffusers of centrifugal compressors. von Karman Inst. for Fluid Dyn., Technical Note 145.

    Google Scholar 

  • Verdon, J.M. (1985). Linearized unsteady aerodynamic theory. United Technologies Research Center Report R85-151774-1.

    Google Scholar 

  • Wade, R.B. and Acosta, A.J. (1966). Experimental observations on the flow past a planoconvex hydrofoil. ASME J. Basic Eng., 88, 273–283.

    Google Scholar 

  • Wade, R.B. and Acosta, A.J. (1967). Investigation of cavitating cascades. ASME J. Basic Eng., Series D, 89, 693–706.

    Google Scholar 

  • Whitehead, D. (1960). Force and moment coefficients for vibrating airfoils in cascade. ARC R&M 3254, London.

    Google Scholar 

  • Wiesner, F.J. (1967). A review of slip factors for centrifugal impellers. ASME J. Eng. for Power, 89, 558–576.

    Google Scholar 

  • Wijdieks, J. (1965). Greep op het ongrijpbare—II. Hydraulische aspecten bij het ontwerpen van pompinstallaties. Delft Hydraulics Laboratory Publ. 43.

    Google Scholar 

  • Wislicenus, G.F. (1947). Fluid mechanics of turbomachinery. McGraw-Hill, New York.

    Google Scholar 

  • Wood, G.M. (1963). Visual cavitation studies of mixed flow pump impellers. ASME J. Basic Eng., Mar. 1963, 17–28.

    Google Scholar 

  • Woods, L.C. (1955). On unsteady flow through a cascade of airfoils. Proc. Roy. Soc. A, 228, 50–65.

    MATH  MathSciNet  Google Scholar 

  • Woods, L.C. (1957). Aerodynamic forces on an oscillating aerofoil fitted with a spoiler. Proc. Roy. Soc. A, 239, 328–337.

    MATH  MathSciNet  Google Scholar 

  • Woods, L.C. (1961). The theory of subsonic plane flow. Cambridge Univ. Press.

    Google Scholar 

  • Worster, R.C. (1963). The flow in volutes and its effect on centrifugal pump performance. Proc. Inst. of Mech. Eng., 177, No. 31, 843–875.

    Google Scholar 

  • Wu, T.Y. (1956). A free streamline theory for two-dimensional fully cavitated hydrofoils. J. Math. Phys., 35, 236–265.

    MATH  Google Scholar 

  • Wu, T.Y. (1962). A wake model for free streamline flow theory, Part 1. Fully and partially developed wake flows and cavity flows past an oblique flat plate. J. Fluid Mech., 13, 161–181.

    MATH  MathSciNet  Google Scholar 

  • Wu, T.Y. and Wang, D.P. (1964). A wake model for free streamline flow theory, Part 2. Cavity flows past obstacles of arbitrary profile. J. Fluid Mech., 18, 65–93.

    MATH  MathSciNet  Google Scholar 

  • Wu, T.Y. (1972). Cavity and wake flows. Ann. Rev. Fluid Mech., 4, 243–284.

    Google Scholar 

  • Yamamoto, K. (1991). Instability in a cavitating centrifugal pump. JSME Int. J., Ser. II, 34, 9–17.

    Google Scholar 

  • Yoshida, Y., Murakami, Y., Tsurusaki, T., and Tsujimoto, Y. (1991). Rotating stalls in centrifugal impeller/vaned diffuser systems. Proc. First ASME/JSME Joint Fluids Eng. Conf., FED-107, 125–130.

    Google Scholar 

  • Young, W.E., Murphy, R., and Reddecliff, J.M. (1972). Study of cavitating inducer instabilities. Pratt and Whitney Aircraft, Florida Research and Development Center, Rept. PWA FR-5131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 CISM, Udine

About this chapter

Cite this chapter

Brennen, C.E. (2007). Hydrodynamics and Cavitation of Pumps. In: d’Agostino, L., Salvetti, M.V. (eds) Fluid Dynamics of Cavitation and Cavitating Turbopumps. CISM International Centre for Mechanical Sciences, vol 496. Springer, Vienna. https://doi.org/10.1007/978-3-211-76669-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-76669-9_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-76668-2

  • Online ISBN: 978-3-211-76669-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics