Skip to main content

Exciton-phonon interaction in semiconductor nanocrystals

  • Chapter
Semiconductor Nanocrystal Quantum Dots

Abstract

The interaction of electrons and holes with lattice vibrations in bulk semiconductors leads to a number of effects, such as a reduction in their mobility because of scattering, a (small) change in the effective mass, the introduction of phonon sidebands in the optical absorption and emission related to the excitons, and homogeneous broadening of spectral lines [1], [2]. It also determines the carrier dynamics in semiconductor devices. In particular, the emission of optical phonons is the main mechanism of relaxation of hot carriers (see Fig. 1), extremely important for the operation of semiconductor lasers [3]. This applies also to quantum wells, super-lattices and quantum wires, nanostructures where the electron and hole energy spectra still are continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuper CG, Whitfield GD (eds) (1963) Polarons and excitons. Plenum, New York

    Google Scholar 

  2. Mahan GD (1990) Many-particle physics. Plenum, New York

    Google Scholar 

  3. Ridley BK (1982) Quantum processes in semiconductors. Oxford University Press, Oxford

    Google Scholar 

  4. Bockelmann U, Bastard G (1990) Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. Physical Review B 42: 8947–8951

    Article  CAS  Google Scholar 

  5. Li XQ, Arakawa Y (1997) Ultra-fast energy relaxation in quantum dots through defect states: a lattice-relaxation approach. Physical Review B 56: 10423–10427

    Article  CAS  Google Scholar 

  6. Verzelen O, Ferreira R, Bastard G (2002) Excitonic polarons in semiconductor quantum dots. Physical Review Letters 88: 146803

    Article  CAS  Google Scholar 

  7. Vasilevskiy MI, Anda EV, Makler SS (2004) Electron-phonon interaction effects in semiconductor quantum dots: a non-perturbative approach. Physical Review B 70: 035318

    Article  CAS  Google Scholar 

  8. Woggon U (1999) Optical properties of semiconductor quantum dots. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  9. Efros AlL (1992) Luminescence polarization of CdSe micro-crystals. Physical Review B 46: 7448–7458

    Article  CAS  Google Scholar 

  10. Efros AlL, Rosen M, Kuno M, Nirmal M, Norris DJ, Bawendi M (1996) Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Physical Review B 54: 4843–4856

    Article  CAS  Google Scholar 

  11. Prado SJ, Trallero-Giner C, Alcalde AM, López-Richard V, Marques GE (2003) Optical transitions in a single CdTe spherical quantum dot. Physical Review B 68: 235327

    Article  CAS  Google Scholar 

  12. Wang L-W, Zunger A (1996) Pseudopotential calculations of nano-scale CdSe quantum dots. Physical Review B 53: 9579–9582

    Article  CAS  Google Scholar 

  13. Delerue C, Lannoo M (2004) Nanostructures. Theory and modelling. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  14. Rolo AG, Vasilevskiy MI (2007) Raman spectroscopy of optical phonons confined in semiconductor quantum dots and nano-crystals. Journal of Raman Spectroscopy 38: 618–633

    Article  CAS  Google Scholar 

  15. Vasilevskiy MI (2002) Dipolar vibrational modes in spherical semiconductor quantum dots. Physical Review B 66: 195326

    Article  CAS  Google Scholar 

  16. Trallero-Giner C, Debernardi A, Cardona M, Menendez-Proupin E, Ekimov AI (1998) Optical vibrons in CdSe dots and dispersion relation of the bulkmaterial. Physical Review B 57: 4664–4669

    Article  CAS  Google Scholar 

  17. Klein MC, Hache F, Ricard D, Flytzanis C (1990) Size dependence of electron-phonon coupling in semiconductor nano-spheres: the case of CdSe. Physical Review B 42: 11123–11132

    Article  CAS  Google Scholar 

  18. Marini JC, Stebe B, Kartheuser E (1994) Exciton-phonon interaction in CdSe and CuCl polar semiconductor nano-spheres. Physical Review B 50: 14302–14308

    Article  CAS  Google Scholar 

  19. Alcalde AM, Weber G (2000) Scattering rates due to electron-phonon interaction in CdSxSe1−x quantum dots. Semiconductor Science and Technology 15: 1082–1086

    Article  CAS  Google Scholar 

  20. Ajiki H (2001) Exciton-phonon interaction in a spherical quantum dot: effect of electron-hole exchange interaction. Physica Status Solidi (b) 224: 633–637

    Article  CAS  Google Scholar 

  21. Fomin VM, Gladilin VN, Devreese JT, Pokatilov EP, Balaban SN, Klimin SN (1998) Photoluminescence of spherical quantum dots. Physical Review B 57: 2415–2425

    Article  CAS  Google Scholar 

  22. Garcia-Cristobal A, Minnaert AWE, Fomin VM, Devreese JT, Silov AYu, Haverkort JEM, Wolter JH (1999) Electronic structure and phonon-assisted luminescence in self-assembled quantum dots. Physica Status Solidi B-Basic Research 215: 331–336

    Article  Google Scholar 

  23. Hamma M, Miranda RP, Vasilevskiy MI, Zorkani I (2007) Calculation of the Huang-Rhys parameter in spherical quantum dots: the optical deformation potential effect. Journal of Physics Condensed Matter 19: 346215

    Article  CAS  Google Scholar 

  24. Ovsyuk NN, Gorokhov EB, Grishchenko VV, Shebanin AP (1988) Low-frequency Raman scattering by small semiconductor particles. JETP Letters 47: 298–300

    Google Scholar 

  25. Tanaka A, Onari S, Arai T (1993) Low-frequency Raman scattering from CdS micro-crystals embedded in a germanium dioxide glass matrix. Physical Review B 47: 1237–1243

    Article  CAS  Google Scholar 

  26. Savoit L, Champagnon B, Duval E, Kudryavtsev IA, Ekimov AI (1996) Size dependence of acoustic and optical vibrational modes of CdSe nano-crystals in glasses. Journal of Non-Crystalline Solids 197: 238–246

    Article  Google Scholar 

  27. Bragas AV, Aku-Leh C, Merlin R (2006) Raman and ultra-fast optical spectroscopy of acoustic phonons in CdTe0.68Se0.32 quantum dots. Physical Review B 73: 125305

    Article  CAS  Google Scholar 

  28. Takagahara T (2002) Electron-phonon interactions in semiconductor quantum dots. In: Masumoto Y, Takagahara T (eds) Semiconductor quantum dots. Springer, Berlin, pp. 115–147

    Google Scholar 

  29. Lamb H (1881) On the vibrations of an elastic sphere. Proceedings of the London Mathematical Society 13: 189–212

    Article  Google Scholar 

  30. Cheng W, Ren S-F, Yu PY (2005) Microscopic theory of the low frequency Raman modes in germanium nano-crystals. Physical Review B 71: 174305

    Article  CAS  Google Scholar 

  31. Goupalov SV, Merkulov IA (1999) Theory of Raman light scattering by nano-crystal acoustic vibrations. Physics of the Solid State 41: 1349–1358

    Article  Google Scholar 

  32. Goupalov SV, Suris RA, Lavallard P, Citrin DS (2001) Homogeneous broadening of the zero-optical-phonon spectral line in semiconductor quantum dots. Nanotechnology 12: 518–522

    Article  CAS  Google Scholar 

  33. Grosse F, Zimmermann R (2007) Electron-phonon interaction in embedded semiconductor nanostructures. Physical Review B 75: 235320

    Article  CAS  Google Scholar 

  34. Bányai L, Koch SW (1993) Semiconductor quantum dots. World Scientific, Singapore

    Google Scholar 

  35. Bawendi MG, Carroll PJ, Wilson WL, Brus LE (1992) Luminescence properties of CdSe quantum crystallites: resonance between interior and surface localized states. Journal of Chemical Physics 96: 946–954

    Article  CAS  Google Scholar 

  36. Valenta J, Moniatte J, Gilliot P, Hönerlage B, Grun JB, Levy R, Ekimov AI (1998) Dynamics of excitons in CuBr nano-crystals: spectral-hole burning and transient four-wave-mixing measurements. Physical Review B 57: 1774–1783

    Article  CAS  Google Scholar 

  37. Jungnickel V, Henneberger F (1996) Luminescence related processes in semiconductor nano-crystals: the strong confinement regime. Journal of Luminescence 70: 238–252

    Article  CAS  Google Scholar 

  38. Empedocles SA, Norris DJ, Bawendi MG (1996) Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Physical Review Letters 77: 3873–3876

    Article  CAS  Google Scholar 

  39. Bissiri M, von Högersthal GB, Bhatti AS, Capizzi M, Frova A, Frigeri P, Franchi S (2000) Optical evidence of polaron interaction in InAs/GaAs quantum dots. Physical Review B 62: 4642–4646

    Article  CAS  Google Scholar 

  40. Devreese JT (2007) Fröhlich polaron from 0D to 3D: concepts and recent developments. Journal of Physics Condensed Matter 19: 255201

    Article  CAS  Google Scholar 

  41. Krauss TD, Wise FW (1997) Raman-scattering study of exciton-phonon coupling in PbS nano-crystals. Physical Review B 55: 9860–9865

    Article  CAS  Google Scholar 

  42. Baranov AV, Yamaguchi S, Masumoto Y (1997) Exciton-LO-phonon interaction in CuCl spherical quantum dots studied by resonant hyper-Raman spectroscopy. Physical Review B 56: 10332–10337

    Article  CAS  Google Scholar 

  43. Scamarcio G, Spagnoto V, Ventruti G, Lugará M, Righini GC (1996) Size dependence of electron-LO-phonon coupling in semiconductor nano-crystals. Physical Review B 53: 10489–10492

    Article  Google Scholar 

  44. Miranda RP, Vasilevskiy MI, Trallero-Ginner C (2006) Non-perturbative approach to the calculation of multi-phonon Raman scattering in semiconductor quantum dots: polaron effect. Physical Review B 74: 115317

    Article  CAS  Google Scholar 

  45. Nomura S, Kobayashi T (1992) Exciton-LO-phonon couplings in spherical semiconductor micro-crystallites. Physical Review B 45: 1305–1316

    Article  CAS  Google Scholar 

  46. Rakovich YuP, Vasilevskiy MI, Artemiev MV, Filonovich SA, Rolo AG, Barber DJ, Gomes MJM (2001) Temperature dependence of the absorption lines in very small quantum dots: the role of electron-phonon interaction. In: Miura N, Ando T (eds) Proceeding of 25th Interational Conference on the Physics of Semiconductors. Springer, Berlin, part II, pp 1203–1204

    Google Scholar 

  47. Woggon U, Gaponenko S, Langbein W, Uhrig A, Klingshirn C (1993) Homogeneous line width of confined electron-hole-pair states in II–VI quantum dots. Physical Review B 47: 3684–3689

    Article  CAS  Google Scholar 

  48. Naoe K, Zimin LG, Masumoto Y (1994) Persistent spectral hole burning in semiconductor nano-crystals. Physical Review B 50: 18200–18210

    Article  CAS  Google Scholar 

  49. Banin U, Cerullo G, Guzelian AA, Bardeen CJ, Alivisatos AP, Shank CV (1997) Quantum confinement and ultrafast dephasing dynamics in InP nano-crystals. Physical Review B 55: 7059–7067

    Article  CAS  Google Scholar 

  50. Besombes L, Kheng K, Marsal L, Mariette H (2001) Acoustic phonon broadening mechanism in single quantum dot emission. Physical Review B 63: 155307

    Article  CAS  Google Scholar 

  51. Mittleman DM, Schoenlein RW, Shiang JJ, Colvin VL, Alivisatos AP, Shank CV (1994) Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nano-crystals. Physical Review B 49: 14435–14447

    Article  CAS  Google Scholar 

  52. Schmitt-Rink S, Miller DAB, Chemla DS (1987) Theory of the linear and nonlinear optical properties of semiconductor micro-crystallites. Physical Review B 35: 8113–8125

    Article  CAS  Google Scholar 

  53. Efros AlL, Rodina AV (1989) Confined excitons, trions and biexcitons in semiconductor micro-crystals. Solid State Communications 72: 645–649

    Article  CAS  Google Scholar 

  54. Grigorian GB, Kazaryan EM, Efros AlL, Yazeva TV (1990) Hole energy quantisation and absorption edge in spherical micro-crystals with complex valence band structure. Soviet Physics Solid State 32: 1031–1038

    Google Scholar 

  55. Einevoll GT (1992) Confinement of excitons in quantum dots. Physical Review B 45: 3410–3417

    Article  Google Scholar 

  56. Cardona M (1996) Fundamentals of semiconductors. Springer, Berlin Heidelberg New York Tokyo, pp. 21–77

    Google Scholar 

  57. Moskalenko AS, Berakdar J, Prokofiev AA, Yassievich IN (2007) Single-particle states in spherical Si/SiO2 quantum dots. Physical Review B 76: 085427

    Article  CAS  Google Scholar 

  58. Burdov VA (2002) Electron and hole spectra of silicon quantum dots. Journal of Experimental and Theoretical Physics 94: 411–418

    Article  CAS  Google Scholar 

  59. Huntzinger J-R, Mlyah A, Paillard V, Wellner A, Combe N, Bonafos C (2006) Electron-acousticphonon interaction and resonant Raman scattering in Ge quantum dots: matrix and quantum confinement effects. Physical Review B 74: 115308

    Article  CAS  Google Scholar 

  60. Vasiliev I, Ögut S, Chelikowsky JR (2001) Ab initio absorption spectra and optical gaps in nano-crystalline silicon. Physical Review Letters 86: 1813–1816

    Article  CAS  Google Scholar 

  61. Weissker H-Ch, Furthmüller J, Bechstedt F (2002) Optical properties of Ge and Si nano-crystallites from ab initio calculations. I. Embedded nano-crystallites. Physical Review B 65: 155327

    Article  CAS  Google Scholar 

  62. Weissker H-Ch, Furthmüller J, Bechstedt F (2003) Structural relaxation in Si and Ge nano-crystallites: influence on the electronic and optical properties. Physical Review B 67: 245304

    Article  CAS  Google Scholar 

  63. Ren SY (1997) Quantum confinement in semiconductor Ge quantum dots. Solid State Communications 102: 479–484

    Article  CAS  Google Scholar 

  64. Ren SY (1997) Quantum confinement of edge states in Si crystallites. Physical Review B 55: 4665–4669

    Article  CAS  Google Scholar 

  65. Delerue C, Allan G, Lannoo M (2001) Electron-phonon coupling and optical transitions for indirect-gap semiconductor nano-crystals. Physical Review B 64: 193402

    Article  CAS  Google Scholar 

  66. Nishida M (2004) Electronic state calculations of Si quantum dots: oxidation effects. Physical Review B 69: 165324

    Article  CAS  Google Scholar 

  67. von Grunberg HH (1997) Energy levels of CdSe quantum dots: wurtzite versus zinc-blende structure. Physical Review B 55: 2293–2302

    Article  Google Scholar 

  68. Trani F, Ninno D, Iadonisi G (2007) Tight-binding formulation of the dielectric response in semiconductor nano-crystals. Physical Review B 76: 085326

    Article  CAS  Google Scholar 

  69. Franceschetti A, Zunger A (1997) Direct pseudopotential calculation of exciton Coulomb and exchange energies in semiconductor quantum dots. Physical Review Letters 78: 915–918

    Article  CAS  Google Scholar 

  70. Burdov VA (2002) Dependence of the optical gap in Si quantum dots on the dot size. Semiconductors 36: 1154–1158

    Article  CAS  Google Scholar 

  71. Jdira L, Liljeroth P, Stoffels E, Vanmaekelberg D, Speller S (2006) Size-dependent single-particle energy levels and inter-particle Coulomb interactions in CdSe quantum dots measured by scanning tunnelling spectroscopy. Physical Review B 73: 115305

    Article  CAS  Google Scholar 

  72. Kang I, Wise FW (1997) Electronic structure and optical properties of PbS and PbSe quantum dots. Journal of the Optical Society of America B 70: 1632–1646

    Article  Google Scholar 

  73. Tsidilkovskii IM (1978) Band Structure of Semiconductors (in Russian). Izdatel’stvo Nauka, Moscow, pp. 21–77

    Google Scholar 

  74. Anselm AI (1978) Introduction to Semiconductor Theory (in Russian). Izdatel’stvo Nauka, Moscow, pp. 319–325

    Google Scholar 

  75. Basu PK (1997) Theory of optical processes in semiconductors. Clarendon Press, Oxford, pp. 124–152

    Google Scholar 

  76. Ekimov AI, Onuschenko AA, Raikh ME, Efros AlL (1986) Size quantization of excitons in micro-crystals with large longitudinal-transverse splitting. Soviet Physics JETP 63: 1054–1062

    Google Scholar 

  77. Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic states. Journal of Chemical Physics 80: 4403–4409

    Article  CAS  Google Scholar 

  78. Franceschetti A, Wang L-W, Fu H, Zunger A (1998) Short-range versus long-range electron-hole exchange interactions in semiconductor quantum dots. Physical Review B 58: 13367–13370

    Article  Google Scholar 

  79. Demchenko DO, Wang L-W (2006) Optical transitions and nature of Stokes shift in spherical CdS quantum dots. Physical Review B 73: 155326

    Article  CAS  Google Scholar 

  80. Takagahara T, Takeda K (1992) Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Physical Review B 46: 15578–15581

    Article  CAS  Google Scholar 

  81. Reboredo FA, Franceschetti A, Zunger A (1999) Excitonic transitions and exchange splitting in Si quantum dots. Applied Physics Letters 75: 2972–2974

    Article  CAS  Google Scholar 

  82. Stroscio MA, Dutta M (2001) Phonons in nanostructures. Cambridge University Press, Cambridge

    Google Scholar 

  83. Landau LD, Lifshitz EM (1986) Theory of elasticity. Pergamon Press, Oxford

    Google Scholar 

  84. Duval E (1992) Far-infrared and Raman vibrational transitions of a solid sphere: selection rules. Physical Review B 46: 5795–5797

    Article  CAS  Google Scholar 

  85. Rufo S, Dutta M, Stroscio MA (2003) Acoustic modes in free and embedded quantum dots. Journal of Applied Physics 93: 2900–2905

    Article  CAS  Google Scholar 

  86. Kuok MH, Lim HS, Ng SC, Liu NN, Wang ZK (2003) Brillouin study of the quantization of acoustic modes in nano-spheres. Physical Review Letters 90: 255502

    Article  CAS  Google Scholar 

  87. Ruppin R, Englman R (1970) Optical phonons in small crystals. Reports on Progress in Physics 33: 149–196

    Article  Google Scholar 

  88. Dumelow T, Parker TJ, Smith SRP, Tilley DR (1993) Far-infrared spectroscopy of phonons and plasmons in semiconductor superlattices. Surface Science Reports 17: 151–212

    Article  CAS  Google Scholar 

  89. Rücker H, Molinari E, Lugli P (1991) Electron—phonon interaction in quasi-two-dimensional systems. Physical Review B 44: 3463–3466

    Article  Google Scholar 

  90. Babiker M(1986) Longitudinal polar optical modes in semiconductor quantum wells. Journal of Physics C-Solid State Physics 19: 683–697

    Google Scholar 

  91. Trallero-Giner C, Garcia-Moliner F, Velasco VR, Cardona M (1992) Analysis of the phenomenological models for long-wavelength polar optical modes in semiconductor layered systems. Physical Review B 45: 11944–11948

    Article  Google Scholar 

  92. Chamberlain MP, Cardona M, Ridley BK (1993) Optical modes in GaAs/AlAs superlattices. Physical Review B 48: 14356–14364

    Article  CAS  Google Scholar 

  93. Roca E, Trallero-Giner C, Cardona M (1994) Polar optical vibrational modes in quantum dots. Physical Review B 49: 13704–13711

    Article  Google Scholar 

  94. Krauss TD, Wise FW, Tanner DB (1996) Observation of coupled vibrational modes of a semiconductor nano-crystal. Physical Review Letters 76: 1376–1379

    Article  CAS  Google Scholar 

  95. Vasilevskiy MI, Rolo AG, Artemyev MV, Filonovich SA, Gomes MJM, Rakovich YuP (2001) FIR absorption in CdSe quantum dot ensembles. Physica Status Solidi (b) 224: 599–603

    Article  CAS  Google Scholar 

  96. Milekhin A, Friedrich M, Zahn DRT, Sveshnikova L, Repinsky S (1999) Optical investigation of CdS quantum dots in Langmuir-Blodgett films. Applied Physics A 69: 97–100

    Article  CAS  Google Scholar 

  97. Vasilevskiy MI, Rolo AG, Gaponik NP, Talapin DV, Rogach AL, Gomes MJM (2002) Dipoleactive vibrations confined in InP quantum dots. Physica B 316–317: 452–454

    Article  Google Scholar 

  98. Vasilevskiy MI, Rolo AG, Gomes MJM, Vikhrova OV, Ricolleau C (2001) Impact of disorder on optical phonons confined in CdS nano-crystallites embedded in a SiO2 matrix. Journal of Physics Condensed Matter 13: 3491–3508

    Article  CAS  Google Scholar 

  99. Pokatilov EP, Klimin SN, Fomin VM, Devreese JT, Wise FW (2002) Multi-phonon Raman scattering in semiconductor nanocrystals: importance of non-adiabatic transitions. Physical Review B 65: 075316

    Article  CAS  Google Scholar 

  100. Bir GL, Pikus GE (1972) Symmetry and strain-induced effects in semiconductors (in Russian). Izdatel’stvo Nauka, Moscow, pp. 374–448

    Google Scholar 

  101. Stoneham AM (1996) Theory of defects in solids. Clarendon, Oxford, pp. 271–341

    Google Scholar 

  102. Cardona M (1996) Fundamentals of semiconductors. Springer, Berlin Heidelberg New York Tokyo, pp. 113–147

    Google Scholar 

  103. Sirenko AA, Belitsky VI, Ruf T, Cardona M, Ekimov AI, Trallero-Giner C (1998) Spin-flip and acoustic-phonon Raman scattering in CdS nano-crystals. Physical Review B 58: 2077–2087

    Article  CAS  Google Scholar 

  104. Anselm AI, Firsov YA (1955) Mean free path of delocalized exciton in an atomic crystal (in Russian). Zh Exp Theor Fiz 28: 152–159

    Google Scholar 

  105. Mahan GD, Hopfield JJ (1964) Piezoelectric polaron effects in CdS. Physical Review Letters 12:241–243

    Article  CAS  Google Scholar 

  106. Blacha A, Presting H, Cardona M (1984) Deformation potentials of k=0 states of tetrahedral semiconductors. Physica Status Solidi (b) 126: 11–36

    Article  CAS  Google Scholar 

  107. Woerner M, Elsaesser T (1995) Ultra-fast thermalization of non-equilibrium holes in p-type tetrahedral semiconductors. Physical Review B 51: 17490–17498

    Article  CAS  Google Scholar 

  108. Dargys A (2005) Hole spin relaxation: optical deformation potential scattering. Semiconductor Science and Technology 20: 733–739

    Article  CAS  Google Scholar 

  109. Landau LD, Lifshitz EM (1991) Quantum mechanics. Non-relativistic theory. Pergamon, Oxford

    Google Scholar 

  110. Guzelian AA, Katari JEB, Kadavanich AV, Banin U, Hamad K, Juban E, Alivisatos AP, Wolters RH, Arnold CC, Hearth JH (1996) Synthesis of size-selected, surface-passivated InP nanocrystals. Journal of Physical Chemistry 100: 7212–7218

    Article  CAS  Google Scholar 

  111. Seong MJ, Mićić OI, Nozik AJ, Mascarenhas A, Cheong HM (2003) Size-dependent Raman study of InP quantum dots. Applied Physics Letters 82: 185–187

    Article  CAS  Google Scholar 

  112. Rolo AG, Vasilevskiy MI, Talapin DV, Rogach AL (2005) Resonant Raman scattering in spherical InP QDs: the role of the optical deformation potential interaction. In: Physics of Semiconductors Exciton-phonon interaction in semiconductor nanocrystals 253 (Menendez J, Van der Walle CG, eds). iICPS27 Proceedings. AIP Publishing, Melville, NY; pp. 747–748

    Google Scholar 

  113. Spector HN, Lee J, Melman P (1986) Exciton linewidth in semiconducting quantum-well structures. Physical Review B 34: 2554–2560

    Article  Google Scholar 

  114. Rudin S, Reinecke TL (1986) Temperature-dependent exciton linewidths in semiconductor quantum wells. Physical Review B 41: 3017–3027

    Article  Google Scholar 

  115. Lang IG, Firsov YA (1962) Kinetic theory of semiconductors with low mobility (in Russian). Zh Exp Theor Fiz 43: 1843–1860

    CAS  Google Scholar 

  116. Duke CB, Mahan GD (1965) Phonon-broadened impurity spectra. I. Density of states. Physical Review 139: A1965–A1982

    Article  Google Scholar 

  117. Itoh T, Nishijima M, Ekimov AI, Gourdon C, Efros AlL, Rosen M (1995) Polaron and exciton-phonon complexes in CuCl nano-crystals. Physical Review Letters 74: 1645–1648

    Article  CAS  Google Scholar 

  118. Ignatiev IV, Kozin IR, Davydov VG, Nair SV, Lee JS, Ren H-W, Sugou S, Masumoto Y (2001) Phonon resonances in photoluminescence spectra of self-assembled quantum dots in an electric field. Physical Review B 63: 075316

    Article  CAS  Google Scholar 

  119. Heitz R, Veit M, Ledentsov NN, Hoffmann A, Bimberg D, Ustinov VM, Kop’ev PS, Alferov ZhI (1997) Energy relaxation by multi-phonon processes in InAs/GaAs quantum dots. Physical Review B 56: 10435–10445

    Article  CAS  Google Scholar 

  120. Toda Y, Moriwaki O, Nishioka M, Arakawa Y (1999) Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states. Physical Review Letters 82: 4114–4117

    Article  CAS  Google Scholar 

  121. Lemaitre A, Ashmore AD, Finley JJ, Mowbray DJ, Skolnik MS, Hopkinson M, Krauss TF (2001) Enhanced phonon-assisted absorption in single InAs/GaAs quantum dots. Physical Review B 63:161309

    Article  CAS  Google Scholar 

  122. Stauber T, Zimmermann R, Castella H (2000) Electron-phonon interaction in quantum dots: a solvable model. Physical Review B 62: 7336–7343

    Article  CAS  Google Scholar 

  123. Jacak L, Machnikowski P, Krasnyi J, Zöller P (2003) Coherent and incoherent phonon processes in artificial atoms. European Physical Journal D 22: 319–331

    CAS  Google Scholar 

  124. Hameau S, Guldner Y, Verzelen O, Ferreira R, Bastard G, Zeman J, Lemaitre A, Gerard JM (1999) Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons. Physical Review Letters 83: 4152–4155

    Article  CAS  Google Scholar 

  125. Meystre P, Surgent III M (1998) Elements of quantum optics. Springer, Berlin, p. 287

    Google Scholar 

  126. Krummheuer B, Axt VM, Kuhn T (2002) Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots. Physical Review B 65: 195313

    Article  CAS  Google Scholar 

  127. Muljarov EA, Zimmermann R (2004) Dephasing in quantum dots: quadratic coupling to acoustic phonons. Physical Review Letters 93: 237401

    Article  CAS  Google Scholar 

  128. Poles E, Selmarten DC, Micic OI, Nozik AJ (1999) Anti-Stokes photoluminescence in colloidal semiconductor quantum dots. Applied Physics Letters 75: 971–973

    Article  CAS  Google Scholar 

  129. Rakovich YuP, Filonovich SA, Gomes MJM, Donegan JF, Talapin DV, Rogach AL, Eychmüller A (2002) Anti-Stokes photoluminescence in II-VI colloidal nano-crystals. Physica Status Solidi (b) 229: 449–452

    Article  CAS  Google Scholar 

  130. Rakovich YuP, Gladyshchuk AA, Rusakov KI, Filonovich SA, Gomes MJM, Donegan JF, Talapin DV, Rogach AL, Eychmüller A (2002) Anti-Stokes luminescence of cadmium telluride nanocrystals. Applied Spectroscopy 69: 444–449

    Article  CAS  Google Scholar 

  131. Wang X, Yu W, Zhang J, Aldana J, Peng X, Xiao M (2003) Photoluminescence up-conversion in colloidal CdTe quantum dots. Physical Review B 68: 125318

    Article  CAS  Google Scholar 

  132. Cantarero A, Trallero-Giner C, Cardona M (1989) Excitons in one-phonon resonant Raman scattering: deformation-potential interaction. Physical Review B 39: 8388–8397

    Article  CAS  Google Scholar 

  133. Vasilevskiy MI, Miranda RP, Anda EV, Makler SS (2004) Polaron effect on Raman scattering in semiconductor quantum dots. Semiconductor Science and Technology 19:S312–S315

    Article  CAS  Google Scholar 

  134. Rodríguez-Suárez R, Menéndez-Proupin E, Trallero-Giner C Cardona M (2000) Multiphonon resonant Raman scattering in nano-crystals. Physical Review B 62: 11006–11016

    Article  Google Scholar 

  135. Müller T, Schrey FF, Strasser G, Unterrainer K (2003) Ultra-fast intra-band spectroscopy of electron capture and relaxation in InAs/GaAs quantum dots. Applied Physics Letters 83:3572–3174

    Article  CAS  Google Scholar 

  136. Schaller RD, Petryga JM, Goupalov SV, Petrushka MA, Ivanov SA, Klimov VI (2005) Breaking the phonon bottleneck in semiconductor nano-crystals via multi-phonon emission induced by intrinsic non-adiabatic interactions. Physical Review Letters 95: 196401

    Article  CAS  Google Scholar 

  137. Heitz R, Born H, Guffarth F, Stier O, Schliwa A, Hoffmann A, Bimberg D (2001) Existence of a phonon bottleneck for excitons in quantum dots. Physical Review B 64: 241305

    Article  CAS  Google Scholar 

  138. Sauvage S, Boucaud P, Lobo RPSM, Bras F, Fishman G, Prazeres R, Glorin F, Ortega JM, Gérard J-M (2002) Long polaron lifetime in InAs/GaAs self-assembled quantum dots. Physical Review Letters 88: 177402

    Article  CAS  Google Scholar 

  139. Urayama J, Norris TB, Singh J, Bhattacharya P (2001) Observation of phonon bottleneck in quantum dot electronic relaxation. Physical Review Letters 86: 4930–4933

    Article  CAS  Google Scholar 

  140. Verzelen O, Ferreira R, Bastard G (2002) Energy relaxation in quantum dots. Physical Review B 66: 081308

    Article  CAS  Google Scholar 

  141. Wetzler R, Wacker A, Schöll E (2004) Non-local Auger effect in quantum dot devices. Semiconductor Science and Technology 19: S43–S44

    Article  CAS  Google Scholar 

  142. Seebeck J, Nielsen TR, Gartner P, Jahnke F (2005) Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation. Physical Review B 71: 125327

    Article  CAS  Google Scholar 

  143. Efros AlL, Kharchenko VA, Rosen M (1995) Breaking the phonon bottleneck in nanometer quantum dots: role of Auger-like processes. Solid State Communications 93: 281–284

    Article  CAS  Google Scholar 

  144. Narvaez GA, Bester G, Jahnke F (2006) Carrier relaxation mechanisms in self-assembled (In,Ga) As/GaAs quantum dots: efficient p→s Auger relaxation of electrons. Physical Review B 74:075403

    Article  CAS  Google Scholar 

  145. Vallée F (1994) Time-resolved investigation of coherent LO-phonon relaxation in III-V semiconductors. Physical Review B 49: 2460–2468

    Article  Google Scholar 

  146. Stoneham AM, McKinnon BA (1998) Excitation, dynamics and dephasing in quantum dots. Journal of Physics Condensed Matter 10: 7665–7677

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Vasilevskiy, M.I. (2008). Exciton-phonon interaction in semiconductor nanocrystals. In: Rogach, A.L. (eds) Semiconductor Nanocrystal Quantum Dots. Springer, Vienna. https://doi.org/10.1007/978-3-211-75237-1_8

Download citation

Publish with us

Policies and ethics