Skip to main content

Averaging for ordinary differential equations and functional differential equations

  • Chapter
The Strength of Nonstandard Analysis

Abstract

A nonstandard approach to averaging theory for ordinary differential equations and functional differential equations is developed. We define a notion of perturbation and we obtain averaging results under weaker conditions than the results in the literature. The classical averaging theorems approximate the solutions of the system by the solutions of the averaged system, for Lipschitz continuous vector fields, and when the solutions exist on the same interval as the solutions of the averaged system. We extend these results to perturbations of vector fields which are uniformly continuous in the spatial variable with respect to the time variable and without any restriction on the interval of existence of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnold (ed.). Dynamical Systems V, Encyclopedia of Mathematical Sciences, Vol. 5, Springer-Verlag, 1994.

    Google Scholar 

  2. H. Barreau and J. Harthong (éditeurs), La mathématique Non Standard, Editions du CNRS, Paris, 1989.

    MATH  Google Scholar 

  3. E. Benoît (Ed.), Dynamic Bifurcations, Proceedings, Luminy 1990, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  4. I.P. van den Berg, Nonstandard Asymptotic Analysis, Lectures Notes in Math. 1249, Springer-Verlag, 1987.

    Google Scholar 

  5. N.N. Bogolyubov and Yu.A. Mitropolski, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, 1961.

    Google Scholar 

  6. J.W. Dauben, Abraham Robinson, The Creation of Nonstandard Analysis, A Personal and Mathematical Odyssey, Princeton University Press, Princeton, New Jersey, 1995.

    MATH  Google Scholar 

  7. F. Diener and M. Diener (eds.), Nonstandard Analysis in Practice, Universitext, Springer-Verlag, 1995.

    Google Scholar 

  8. F. Diener and G. Reeb, Analyse non standard, Hermann, 1989.

    Google Scholar 

  9. M. Diener and C. Lobry (éditeurs), Analyse non standard et représentation du réel, OPU (Alger), CNRS (Paris), 1985.

    Google Scholar 

  10. M. Diener and G. Wallet (éditeurs), Mathématiques finitaires et analyse non standard, Publication mathématique de l’Université de Paris 7, Vol. 31-1, 31-2, 1989.

    Google Scholar 

  11. J.L. Callot and T. Sari. Stroboscopie et moyennisation dans les sys-tèmes d’équations différentielles à solutions rapidement oscillantes, in Mathematical Tools and Models for Control, Systems Analysis and Signal Processing, vol. 3, CNRS Paris, 1983.

    Google Scholar 

  12. A. Fruchard and A. Troesch (éditeurs), Colloque Trajectorien à la mémoire de G. Reeb et J.L. Callot, Strasbourg-Obernai, 12–16 juin 1995, Prépublication de l’IRMA, Strasbourg, 1995.

    Google Scholar 

  13. J.K. Hale, “Averaging methods for differential equations with retarded arguments and a small parameter”, J. Differential Equations, 2 (1966) 57–73.

    Article  MATH  MathSciNet  Google Scholar 

  14. J.K. Hale and S.M. Verduyn Lunel, “Averaging in infinite dimensions”, J. Integral Equations Appl., 2 (1990) 463–494.

    MATH  MathSciNet  Google Scholar 

  15. J.K. Hale and S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences 99, Springer-Verlag, New York, 1993.

    Google Scholar 

  16. L.D. Klugler, Nonstandard Analysis of almost periodic functions, in Applications of Model Theory to Algebra, Analysis and Probability, W.A.J. Luxemburg ed., Holt, Rinehart and Winston, 1969.

    Google Scholar 

  17. M. Lakrib, “The method of averaging and functional differential equations with delay”, Int. J. Math. Sci., 26 (2001) 497–511.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Lakrib, “On the averaging method for differential equations with delay”, Electron. J. Differential Equations, 65 (2002) 1–16.

    MathSciNet  Google Scholar 

  19. M. Lakrib, Stroboscopie et moyennisation dans les équations différentielles fonctionnelles à retard, Thèse de Doctorat en Mathématiques de l’Université de Haute Alsace, Mulhouse, 2004.

    Google Scholar 

  20. M. Lakrib and T. Sari, “Averaging results for functional differential equations”, Sibirsk. Mat. Zh., 45 (2004) 375–386; translation in Siberian Math. J., 45 (2004) 311-320.

    MATH  MathSciNet  Google Scholar 

  21. M. Lakrib and T. Sari, Averaging Theorems for Ordinary Differential Equations and Retarded Functional Differential Equations. http://www.math.uha.fr/ps/2005011akrib.pdf

    Google Scholar 

  22. B. Lehman and S.P. WEIBEL, “Fundamental theorems of averaging for functional differential equations”, J. Differential Equations, 152 (1999) 160–190.

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Lobry, Et pourtant... ils ne remplissent pas ℕ!, Aleas Editeur, Lyon, 1989.

    Google Scholar 

  24. C. Lobry, T. Sari and S. Touhami, “On Tykhonov’s theorem for convergence of solutions of slow and fast systems”, Electron. J. Differential Equations, 19 (1998) 1–22.

    MathSciNet  Google Scholar 

  25. R. Lutz and M. Goze, Nonstandard Analysis: a practical guide with applications, Lectures Notes in Math. 881, Springer-Verlag, 1982.

    Google Scholar 

  26. E. Nelson, “Internal Set Theory”, Bull. Amer. Math. Soc., 83 (1977) 1165–1198.

    Article  MATH  MathSciNet  Google Scholar 

  27. G. Reeb, Équations différentielles et analyse non classique (d’après J. L. Callot), in Proceedings of the 4th International Colloquium on Differential Geometry (1978), Publicaciones de la Universidad de Santiago de Compostela, 1979.

    Google Scholar 

  28. A. Robinson, “Compactification of Groups and Rings and Nonstandard Analysis”, Journ. Symbolic Logic, 34 (1969) 576–588.

    Article  MATH  Google Scholar 

  29. A. Robinson, Nonstandard Analysis, American Elsevier, New York, 1974.

    Book  Google Scholar 

  30. J.-M. Salanskis and H. Sinaceur (eds.), Le Labyrinthe du Continu, Colloque de Cerisy, Springer-Verlag, Paris, 1992.

    Google Scholar 

  31. J.A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences 59, Springer-Verlag, New York, 1985.

    Google Scholar 

  32. T. Sari, “Sur la théorie asymptotique des oscillations non stationnaires”, Astérisque 109–110 (1983) 141–158.

    MathSciNet  Google Scholar 

  33. T. Sari, Fonctions presque périodiques, in Actes de l’école d’été Analyse non standard et representation du réel, Oran-Les Andalouses 1984, OPU Alger — CNRS Paris, 1985.

    Google Scholar 

  34. T. Sari, General Topology, in Nonstandard Analysis in Practice, F. Diener and M. Diener (Eds.), Universitext, Springer-Verlag. 1995.

    Google Scholar 

  35. T. Sari, Petite histoire de la stroboscopie, in Colloque Trajectorien à la Mémoire de J. L. Callot et G. Reeb, Strasbonrg-Obernai 1995, Publication IRMA, Univ. Strasbourg (1995), 5–15.

    Google Scholar 

  36. T. Sari. Stroboscopy and Averaging, in Colloque Trajectorien à la Mémoire de J.L. Callot et G. Reeb, Strasbourg-Obernai 1995, Publication IRMA, Univ. Strasbourg, 1995.

    Google Scholar 

  37. T. Sari, Nonstandard Perturbation Theory of Differential Equations, Edinburgh, invited talk in International Congres in Nonstandard Analysis and its Applications, ICMS, Edinburgh, 1996. http://www.math.uha.fr/sari/papers/icms1996.pdf

    Google Scholar 

  38. T. Sari, Averaging in Hamiltonian systems with slowly varying parameters, in Developments in Mathematical and Experimental Physics, Vol. C, Hydrodynamics and Dynamical Systems, Proceedings of the First Mexican Meeting on Mathematical and Experimental Physics, El Colegio Nacional, Mexico City, September 10–14. 2001, Ed. A. Macias, F. Uribe and E. Diaz, Kluwer Academic/Plenum Publishers, 2003.

    Google Scholar 

  39. T. Sari and K. Yadi, “On Pontryagin-Rodygin’s theorem for convergence of solutions of slow and fast systems”, Electron. J. Differential Equations, 139 (2004) 1–17.

    MathSciNet  Google Scholar 

  40. I. Stewart, The Problems of Mathematics, Oxford University Press, 1987.

    Google Scholar 

  41. K.D. Stroyan and W.A.J. Luxemburg, Introduction to the theory of infinitesimals, Academic Press, 1976.

    Google Scholar 

  42. IIIe rencontre de Géométrie du Schnepfenried, Feuilletages, Géométrie symplectique et de contact, Analyse non standard et applications, Vol. 2, 10–15 mai 1982, Astérisque 109–110, Société Mathématique de France, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Wien

About this chapter

Cite this chapter

Sari, T. (2007). Averaging for ordinary differential equations and functional differential equations. In: van den Berg, I., Neves, V. (eds) The Strength of Nonstandard Analysis. Springer, Vienna. https://doi.org/10.1007/978-3-211-49905-4_20

Download citation

Publish with us

Policies and ethics