Skip to main content

The behavioral effect of human mesenchymal stem cell transplantation in cold brain injured rats

  • Chapter
Advances in Functional and Reparative Neurosurgery

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 99))

Summary

We investigated the effect of stereotaxically transplanted human mesenchymal stem cells (hMSCs) on behavioral change after traumatic cold brain injury in adult rats. Cortical lesions (n = 20) were induced by touching a metal stamp, cooled with liquid nitrogen, to the dura over the forelimb motor cortex of adult rats. The procedure produced a localized lesion, and the animals showed significant motor deficits. hMSCs were freshly isolated from human iliac bone and cultured in tissue culture flasks with 10 ml Dulbecco’s modified Eagle’s medium. The animals received hMSC grafts (3 ×105 hMSCs) 6 days after cold lesion (n = 10). All rats were sacrificed 3 or 7 weeks after cold injury, and immunohistochemical staining was performed on brain sections to identify donor hMSCs.

Neurological evaluations were performed with the forepaw adjusting step test and modified neurological scoring. Treatment with 3 ×105 hMSCs improved the rat’s neurological functions. We also found that the transplanted cells successfully migrated into the injured brain, preferentially localized around the injury site, and expressed the neuronal and astrocyte marker.

These data suggest that hMSCs may be a potential therapeutic tool for brain injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McIntosh TK, Smith DH, Meaney DF, Kotapka MJ, Gennarelli TA, Graham Di (1996) Neuropathological sequelae of traumatic brain injury: relationship to neurochemical and biomechanical mechanisms. Lab Invest 74: 315–342

    PubMed  CAS  Google Scholar 

  2. Kawamata T, Katayama Y, Hovda DA, Yoshino A, Becker DP (1995) Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids. Brain Res 674: 196–204

    Article  PubMed  CAS  Google Scholar 

  3. Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE (1997) Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res 765: 283–290

    Article  PubMed  CAS  Google Scholar 

  4. Xiong Y, Gu Q, Peterson PL, Muizelaar JP, Lee CP (1997) Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J Neurotrauma 14: 23–34

    Article  PubMed  CAS  Google Scholar 

  5. Anderson DK, Hall ED (1993) Pathophysiology of spinal cord trauma. Ann Emerg Med 22: 987–992

    Article  PubMed  CAS  Google Scholar 

  6. Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75: 15–26

    PubMed  CAS  Google Scholar 

  7. Kesslak JP, Brown L, Steichen C, Cotman CW (1986) Adult and embryonic frontal cortex transplants after frontal cortex ablation enhance recovery on a reinforced alternation task. Exp Neurol 94: 615–626

    Article  PubMed  CAS  Google Scholar 

  8. Kesslak JP, Nieto-Sampedro M, Globus J, Cotman CW (1986) Transplants of purified astrocytes promote behavioral recovery after frontal cortex ablation. Exp Neurol 92: 377–390

    Article  PubMed  CAS  Google Scholar 

  9. Muir JK, Raghupathi R, Saatman KE, Wilson CA, Lee VM, Trojanowski JQ, Philips MF, McIntosh TK (1999) Terminally differentiated human neurons survive and integrate following transplantation into the traumatically injured rat brain. J Neurotrauma 16: 403–414

    PubMed  CAS  Google Scholar 

  10. Netto CA, Hodges H, Sinden JD, LePeillet E, Kershaw T, Sowinski P, Meldrum BS, Gray JA (1993) Foetal grafts from hippocampal regio superior alleviate ischaemic-induced behavioural deficits. Behav Brain Res 58: 107–112

    Article  PubMed  CAS  Google Scholar 

  11. Stein DG, Palatucci C, Kahn D, Labbe R (1988) Temporal factors influence recovery of function after embryonic brain tissue transplants in adult rats with frontal cortex lesions. Behav Neurosci 102: 260–267, 325–326

    Article  PubMed  CAS  Google Scholar 

  12. Bjorklund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nat Neurosci 3: 344–544

    Article  Google Scholar 

  13. Theele DP, Streit WJ (1993) A chronicle of microglial ontogeny. Glia 7: 5–8

    Article  PubMed  CAS  Google Scholar 

  14. Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94: 4080–4085

    Article  PubMed  CAS  Google Scholar 

  15. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ (1988) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc Natl Acad Sci USA 95: 3908–3913

    Article  Google Scholar 

  16. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96: 10711–10716

    Article  PubMed  CAS  Google Scholar 

  17. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N, Chopp M (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59: 514–523

    PubMed  CAS  Google Scholar 

  18. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290: 1779–1782

    Article  PubMed  CAS  Google Scholar 

  19. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61: 364–370

    Article  PubMed  CAS  Google Scholar 

  20. Bonilla S, Alarcon P, Villaverde R, Aparicio P, Silva A, Martinez S (2002) Haematopoietic progenitor cells from adult bone marrow differentiate into cells that express oligodendroglial antigens in the neonatal mouse brain. Eur J Neurosci 15: 575–582

    Article  PubMed  Google Scholar 

  21. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174: 11–20

    Article  PubMed  Google Scholar 

  22. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32: 1005–1011

    PubMed  CAS  Google Scholar 

  23. Akiyama Y, Radtke C, Honmou O, Kocsis JD (2002) Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39: 229–236

    Article  PubMed  Google Scholar 

  24. Hortobagyi T, Hortobagyi S, Gorlach C, Harkany T, Benyo Z, Gorogh T, Nagel W, Wahl M (2000) A novel brain trauma model in the mouse: effects of dexamethasone treatment. Pflugers Arch 441: 409–415

    Article  PubMed  CAS  Google Scholar 

  25. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26: 627–634

    PubMed  CAS  Google Scholar 

  26. Chang JW, Wachtel SR, Young D, Kang UJ (1999) Biochemical and anatomical characterization of forepaw adjusting steps in rat models of Parkinson’s disease: studies on medial forebrain bundle and striatal lesions. Neuroscience 88: 617–628

    Article  PubMed  CAS  Google Scholar 

  27. Holmin S, Mathiesen T (2000) Intracerebral administration of interleukin-1 beta and induction of inflammation, apoptosis, and vasogenic edema. J Neurosurg 92: 108–120

    Article  PubMed  CAS  Google Scholar 

  28. McIntosh TK, Saatman KE, Raghupathi R, Graham DI, Smith DH, Lee VM, Trojanowski JQ (1998) The Dorothy Russell Memorial Lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol Appl Neurobiol 24: 251–267

    Article  PubMed  CAS  Google Scholar 

  29. Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100: II247–II256

    PubMed  CAS  Google Scholar 

  30. Park KW, Eglitis MA, Mouradian MM (2001) Protection of nigral neurons by GDNF-engineered marrow cell transplantation. Neurosci Res 40: 315–323

    Article  PubMed  CAS  Google Scholar 

  31. Spear BT, Tilghman SM (1990) Role of alpha-fetoprotein regulatory elements in transcriptional activation in transient heterokaryons. Mol Cell Biol 10: 5047–5054

    PubMed  CAS  Google Scholar 

  32. Mahmood A, Lu D, Lu M, Chopp M (2003) Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53: 697–702

    Article  PubMed  Google Scholar 

  33. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 99: 11946–11950

    Article  PubMed  CAS  Google Scholar 

  34. Lee J, Duan W, Mattson MP (2002) Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82: 1367–1375

    Article  PubMed  CAS  Google Scholar 

  35. Menard C, Hein P, Paquin A, Savelson A, Yang XM, Lederfein D, Barnabe-Heider F, Mir AA, Sterneck E, Peterson AC, Johnson PF, Vinson C, Miller FD (2002) An essential role for a MEK-C/EBP pathway during growth factor-regulated cortical neurogenesis. Neuron 36: 597–610

    Article  PubMed  CAS  Google Scholar 

  36. Tao Y, Black IB, DiCicco-Bloom E (1993) Neurogenesis in neonatal rat brain is regulated by peripheral injection of basic fibroblast growth factor (bFGF). J Comp Neurol 376: 653–663

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Cho, Y.H., Kim, H.S., Lee, K.H., Lee, Y.E., Chang, J.W. (2006). The behavioral effect of human mesenchymal stem cell transplantation in cold brain injured rats. In: Chang, J.W., Katayama, Y., Yamamoto, T. (eds) Advances in Functional and Reparative Neurosurgery. Acta Neurochirurgica Supplementum, vol 99. Springer, Vienna. https://doi.org/10.1007/978-3-211-35205-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-35205-2_24

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-35204-5

  • Online ISBN: 978-3-211-35205-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics