Skip to main content

Transcriptional regulation of stress-inducible genes in procaryotes

  • Chapter
Stress-Inducible Cellular Responses

Part of the book series: EXS ((EXS,volume 77))

Summary

In procaryotes such as Escherichia coli, transcriptional activation of heat shock genes in response to elevated temperature is caused primarily by transient increase in the amount of σ32 (rpoH gene product) specifically required for transcription from the heat shock promoters. The increase in σ32 level results from increased translation of rpoH mRNA and from stabilization of σ32 which is ordinarily very unstable. Some of the factors and cis-acting elements that constitute the complex regulatory circuits have been identified and characterized, but detailed mechanisms as well as nature of sensors and signals remain to be elucidated. Whereas this “classical”heat shock regulon (σ32 regulon) provides major protective functions against thermal stress, a second heat shock regulon mediated by σ3224) encodes functions apparently required under more extreme conditions, and is activated by responding to extracyto- plasmic signals. These regulons mediated by minor σ factors (σ32 in particular) appear to be conserved in most gram-negative bacteria, but not in gram-positive bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benvenisti, L., Koby, S., Rutman, A., Giladi, H., Yura, T. and Oppenheim, A.B. (1995) Cloning and primary sequence of the rpoH gene from Pseudomonas aeruginosa. Gene 155: 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Bukau, B. (1993) Regulation of the Escherichia coli heat-shock response. Mol. Microbiol. 9: 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Boylan, S.A., Redfield, A.R., Brody, M.S. and Price, C.W. (1993) J. Bacteriol. 175: 7931–7937.

    PubMed  CAS  Google Scholar 

  • Chuang, S.-E. and Blattner, F.R. (1993) Characterization of twenty-six new heat shock genes of Escherichia coli. J. Bacteriol. 175: 5242–5252.

    CAS  Google Scholar 

  • Craig, E.A. and Gross, C.A. (1991) Is hsp70 the cellular thermometer? Trends Biochem. Sci. 16: 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, J.W., Vaughn, V, Walter, W.A., Neidhardt, F.C. and Gross, C.A. (1987) Regulation of the promoters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. Genes Dev. 1: 419–432.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, J.W. and Gross, C.A. (1989) Identification of the σE subunit of Escherichia coli RNA polymerase: a second alternate a factor involved in high-temperature gene expression. Genes Dev. 3: 1462–1471.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, N., Nomura, T. and Ishihama, A. (1987) Promoter selectivity of Escherichia coli RNA polymerase: purification and properties of holoenzyme containing the heat-shock σ subunit. J. Biol. Chem. 262: 1855–1859.

    PubMed  CAS  Google Scholar 

  • Gamer, J., Bujard, H. and Bukau, B. (1992) Physical interaction between heat shock proteins DnaK, DnaJ, and grpE and the bacterial heat shock transcription factor σ32. Cell 69: 833–842.

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos, C., Ang, D., Liberek, K. and Zylicz, M. (1990) Properties of the Escherichia coli heat shock proteins and their role in bacteriophage λ growth. In: R. Morimoto, A. Tissières and C. Georgopoulos (eds): Stress Proteins in Biology and Medicine, Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY, pp 191–221.

    Google Scholar 

  • Georgopoulos, C. and Welch, W.J. (1993) Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9: 601–634.

    Article  CAS  Google Scholar 

  • Georgopoulos, C., Liberek, K., Zylicz, M. and Ang, D. (1994) Properties of the heat shock proteins of Escherichia coli and the autoregulation of the heat shock response. In: R.I. Morimoto, A. Tissières and C. Georgopoulos (eds): The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY, pp 209–249.

    Google Scholar 

  • Goff, S.A. and Goldberg, A.L. (1985) Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell 41: 589–595.

    Article  Google Scholar 

  • Gragerov, A., Nudler, E., Komissarova, N., Gaitanaris, G.A., Gottesman, M.E. and Nikiforov, V (1992) Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 10341–10344.

    Article  CAS  Google Scholar 

  • Gross, C.A., Straus, D.B., Erickson, J.W. and Yura, T. (1990) The function and regulation of heat shock proteins in Escherichia coli. In: R. Morimoto, A. Tissières and C. Georgopoulos (eds): Stress Proteins in Biology and Medicine, Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY, pp 167–189.

    Google Scholar 

  • Gross, C.A., Straus, D.B., Erickson, J.W. and Yura, T. (1990) The function and regulation of heat shock proteins in Escherichia coli. In R. Morimoto, A. Tissières and C. Georgopoulos (eds)Stress Proteins in Biology and Medicine, Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY, pp 167–189.

    Google Scholar 

  • Grossman, A.D., Erickson, J.W. and Gross, C. (1984) The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38: 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Hendrick, J.P. and Hartl, F.-U. (1993) Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62: 349–384.

    Article  PubMed  CAS  Google Scholar 

  • Herendeen, S.L., VanBogelen, R.A. and Neidhardt, F.C. (1979) Levels of major proteins of Escherichia coli during growth at different temperatures. J. Bacteriol. 139: 185–194.

    PubMed  CAS  Google Scholar 

  • Herman, C., Thevenet, D., D’Ari, R. and Bouloc, P. (1995) Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc. Natl. Acad. Sci. USA 92: 3516–3520.

    Article  PubMed  CAS  Google Scholar 

  • Hiratsu, K., Amemura, M., Nashimoto, H., Shinagawa, H. and Makino, K. (1995) The rpoE gene of Escherichia coli, which encodes σE, is essential for bacterial growth at high temperature. J. Bacteriol 177: 2918–2922.

    PubMed  CAS  Google Scholar 

  • I to, K., Akiyama, Y., Yura, T and Shiba, K. (1986) Diverse effects of the MalE-LacZ hybrid protein on Escherichia coli cell physiology. J. Bacteriol. 167: 201–204.

    PubMed  CAS  Google Scholar 

  • Kamath-Loeb, A.S. and Gross, C.A. (1991) Translational regulation of σ32 synthesis: requirement for an internal control element. J. Bacteriol. 173: 3904–3906.

    PubMed  CAS  Google Scholar 

  • Kanemori, M., Mori, H. and Yura, T. (1994) Induction of heat shock proteins by abnormal proteins results form stabilization and not increased synthesis of a32 in Escherichia coli. J. Bacteriol. 176: 5648–5653.

    CAS  Google Scholar 

  • Kusukawa, N. and Yura, T. (1988) Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress. Genes Dev. 2: 874–882.

    Article  PubMed  CAS  Google Scholar 

  • Lemaux, P.G., Herendeen, S.L., Bloch, P.L. and Neidhardt, F.C. (1978) Transient rates of synthesis of individual polypeptides in E. coli following temperature shifts. Cell 13: 427–434.

    Article  PubMed  CAS  Google Scholar 

  • Liberek, K., Galitski, T.P., Zylicz, M. and Georgopoulos, C. (1992) The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the σ32 transcription factor. Proc. Natl. Acad. Sci. USA 89: 3516–3520.

    Article  PubMed  CAS  Google Scholar 

  • Liberek, K. and Georgopoulos, C. (1993) Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins. Proc. Natl. Acad. Sci. USA 90: 11019–11023.

    Article  PubMed  CAS  Google Scholar 

  • Mecsas, J., Rouvière, P.E., Erickson, J.W., Donohue, T. and Gross, C.A. (1993) The activity of σE, an Escherichia coli heat-inducible cr-factor, is modulated by expression of outer membrane proteins. Genes Dev. 7: 2619–2628.

    Article  Google Scholar 

  • Naczynski, Z.M., Mueller, C. and Kropinski, A.M. (1995) Cloning the gene for the heat shock response positive regulator (σ32 homolog) from Pseudomonas aeruginosa. Can. J. Microbiol. 41: 75–87.

    Article  CAS  Google Scholar 

  • Nagai, H., Yano, R., Erickson, J.W. and Yura, T. (1990) Transcriptional regulation of the heat shock regulatory gene rpoH in Escherichia coli: involvement of a novel catabolite-sensitive promoter. J. Bacteriol. 172: 2710–2715.

    PubMed  CAS  Google Scholar 

  • Nagai, H., Yuzawa, H. and Yura, T. (1991) Interplay of two cis-acting mRNA regions in translational control of a32 synthesis during the heat shock response of Escherichia coli. Proc. Natl. Acad. Sci. USA 88: 10515–10519.

    Article  CAS  Google Scholar 

  • Nagai, H., Yuzawa, H., Kanemori, M. and Yura, T. (1994) Distinct segment of σ32 polypeptide is involved in the DnaK-mediated negative control of heat shock response in Escherichia coli. Proc. Natl. Acad. Sci. USA 91: 10280–10284.

    Article  CAS  Google Scholar 

  • Nakahigashi, K., Yanagi, H. and Yura, T. (1995) Isolation and sequence analysis of rpoH genes encoding σ32 homologues from gram-negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res. 23: 4383–4390.

    PubMed  CAS  Google Scholar 

  • Narberhaus, F. and Bahl, H. (1992) Cloning, sequencing, and molecular analysis of the groESL operon of Clostridium acetobutylicum. J. Bacteriol. 174: 3282–3289.

    PubMed  CAS  Google Scholar 

  • Neidhardt, F.C. and VanBogelen, R.A. (1981) Positive regulatory gene for temperature- controlled proteins in Escherichia coli. Biochem. Biophys. Res. Commun. 100: 894 - 900.

    Article  CAS  Google Scholar 

  • Neidhardt, F.C. and VanBogelen, R.A. (1987) Heat shock response. In: F.C. Neidhardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter and H.E. Umbarger (eds): Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, Am. Soc. Microbiol., Washington, DC., pp 1334–1345.

    Google Scholar 

  • Parsell, D.A. and Sauer, R.T. (1989) Induction of a heat shock-like response by unfolded protein in Escherichia coli: dependence on protein level not protein degradation. Genes Dev. 3: 1226–1232.

    Article  PubMed  CAS  Google Scholar 

  • Raina, S., Missiakas, D. and Georgopoulos, C. (1995) The rpoE gene encoding the σE (σ24) heat shock sigma factor of Escherichia coli. EMBO J. 14: 1043–1055.

    CAS  Google Scholar 

  • Rouvière,P.E.,Peñas, A.De Las,Mecsas,J.Lu,C.Z.Rudd,KE.. and Gross,C.A. (1995) rpoE, the gene encoding the second heat-shock sigma factor, σE, in Escherichia coli. EMBO J14:1032–104

    Google Scholar 

  • Sprengart, M.L., Fatscher, H.P. and Fuchs, E. (1990) The initiation of translation in E. coli: apparent base pairing between the 16S rRNA and downstream sequences of the mRNA. Nuclic Acids Res. 18: 1719–1723.

    Article  CAS  Google Scholar 

  • Straus, D.B., Walter, W.A. and Gross, C.A. (1987) The heat shock response of E. coli is regulated by changes in the concentration of σ32. Nature 329: 348–351.

    Article  PubMed  CAS  Google Scholar 

  • Straus, D.B., Walter, W.A. and Gross, C.A. (1988) Escherichia coli heat shock gene mutants are defective in proteolysis. Genes Dev 2: 1851–1858.

    Article  PubMed  CAS  Google Scholar 

  • Straus, D.B., Walter, W.A. and Gross, C.A. (1989) The activity of σ32 is reduced under conditions of excess heat shock protein production in Escherichia coli. Genes Dev. 3: 2003–2010.

    CAS  Google Scholar 

  • Straus, D., Walter, W. and Gross, C.A. (1990) DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Dev. 4: 2202–2209.

    Article  PubMed  CAS  Google Scholar 

  • Taura, T., Kusukawa, N., Yura, T. and Ito, K. (1989) Transient shutoff of Escherichia coli heat shock protein synthesis upon temperature shift down. Biochem. Biophys. Res. Commun. 163: 438–443.

    Article  PubMed  CAS  Google Scholar 

  • Tilly, K., McKittrick, N., Zylicz, M. and Georgopoulos, C. (1983) The dnaKprotein modulates the heat-shock response of Escherichia coli. Cell 34: 641–646.

    Article  PubMed  CAS  Google Scholar 

  • Tilly, K., Spence, J. and Georgopoulos, C. (1989) Modulation of stability of the Escherichia coli heat shock regulatory factor σ32. J. Bacteriol. 171:1585–31589.

    Google Scholar 

  • Tomoyasu, T., Gamer, J., Bukau, B., Kanemori, M., Mori, H., Rutman, A.J., Oppenheim, A.B., Yura, T., Yamanaka, K., Niki, H., Hiraga, S. and Ogura, T. (1995) Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor σ32.EMBO J 14: 2551–2560.

    PubMed  CAS  Google Scholar 

  • Van Asseldonk, M., Simons, A., Visser, H., De Vos, W.M. and Simons, G. (1993) Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. J. Bac-teriol. 175: 1637–1644.

    Google Scholar 

  • Völker, U., Engelmann, S., Maul, B., Riethdorf, S., Völker, A., Schmid, R., Mach, H. and Hecker, M. (1994) Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140: 741–752.

    Article  PubMed  Google Scholar 

  • Wang, Q. and Kaguni, J.M. (1989) A novel sigma factor is involved in expression of the rpoH gene of Escherichia coli. J. Bacteriol. 171: 4248–4283.

    CAS  Google Scholar 

  • Weiner, L., Brissette, J.L. and Model, R (1991) Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on σ54 and modulated by positive and negative feedback mechanisms. Genes Dev. 5: 1912–1923.

    Article  PubMed  CAS  Google Scholar 

  • Wetzstein, M., Völker, U., Dedio, J., Löbau, S., Zuber, U., Schiesswohl, M., Herget, C., Hecker, M. and Schumann, W. (1992) Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtils. J. Bacteriol. 174: 3300–3310.

    CAS  Google Scholar 

  • Wild, J., Walter, W.A., Gross, C.A. and Altman, E. (1993) Accumulation of secretory protein precursors in Escherichia coli induces the heat shock response. J. Bacteriol. 175: 3992–3997.

    PubMed  CAS  Google Scholar 

  • Yamamori, T., Ito, K., Nakamura, Y. and Yura, T. (1978) Transient regulation of protein synthesis in Escherichia coli upon shift-up of growth temperature. J. Bacteriol. 134: 1133–1140.

    PubMed  CAS  Google Scholar 

  • Yamamori, T. and Yura, T. (1980) Temperature-induced synthesis of specific proteins in Escherichia coli: evidence for transcriptional control. J. Bacteriol. 142: 843–851.

    PubMed  CAS  Google Scholar 

  • Yamamori, T. and Yura, T. (1982) Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 79: 860–864.

    Article  PubMed  CAS  Google Scholar 

  • Yura, T., Nagai, H. and Mori, H. (1993) Regulation of the heat shock response in bacteria. Annu. Rev. Microbiol. 47: 321–350.

    Article  PubMed  CAS  Google Scholar 

  • Yuzawa, H., Nagai, H., Mori, H. and Yura, T. (1993) Heat induction of σ32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli. Nucleic Acids Res. 21: 5449–5455.

    Article  CAS  Google Scholar 

  • Zhou, Y.-N., Kusukawa, N., Erickson, J.W., Gross, C.A. and Yura, T. (1988) Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor σ32. J. Bacteriol. 170: 3640–3649.

    PubMed  CAS  Google Scholar 

  • Zuber, U. and Schumann, W. (1994) CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J. Bacteriol. 176: 1359–1363.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Yura, T., Nakahigashi, K., Kanemori, M. (1996). Transcriptional regulation of stress-inducible genes in procaryotes. In: Feige, U., Yahara, I., Morimoto, R.I., Polla, B.S. (eds) Stress-Inducible Cellular Responses. EXS, vol 77. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9088-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9088-5_11

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9901-7

  • Online ISBN: 978-3-0348-9088-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics