Skip to main content

An Algebraic Decoding Algorithm for Convolutional Codes

  • Conference paper
Dynamical Systems, Control, Coding, Computer Vision

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 25))

Abstract

The class of convolutional codes generalizes the class of linear block codes in a natural way. The construction of convolutional codes which have a large free distance and which come with an efficient decoding algorithm is a major task. Contrary to the situation of linear block codes there exists only very few algebraic construction of convolutional codes.

Supported in part by NSF grant DMS-96-10389

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. M. Allen and J. Rosenthal (1998). Parity-Check decoding of convolutional codes whose systems parameters have desirable algebraic properties, to appear in Proceedings of the 1998 IEEE International Symposium on Information Theory, 307, Boston, MA.

    Google Scholar 

  2. P. Elias (1955). Coding for Noisy Channels. IRE Conv. Rec. 4, 37–46.

    Google Scholar 

  3. P. Fitzpatrick (1995). On the Key Equation. IEEE Trans. Inform. Theory IT-41, No. 5, 1290–1302.

    Article  MathSciNet  Google Scholar 

  4. E. Fornasini and M. E. Valcher (1994). Algebraic Aspects of 2D Convolutional Codes. IEEE Trans. Inform. Theory IT-40, No. 4, 1068–1082.

    Article  MathSciNet  Google Scholar 

  5. G. D. Forney (1973). Structural Analysis of Convolutional Codes via Dual Codes. IEEE Trans. Inform. Theory IT-19, No. 5, 512–518.

    Article  MathSciNet  Google Scholar 

  6. G. D. Forney (1974). Convolutional Codes II: Maximum Likelihood Decoding. Inform. Control 25, 222–266.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Johannesson and K. SH. Zigangirov (1999). Fundamentals of Convolutional Coding. IEEE Press, New York.

    Book  Google Scholar 

  8. S. Lin and D. Costello (1983). Error Control Coding: Fundamentals and Applications. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  9. J. L. Massey (1963). Threshold decoding. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  10. J. L. MasseY and M. K. Sain (1967). Codes, Automata, and Continuous Systems: Explicit Interconnections. IEEE Trans. Automat. Contr. AC-12, No. 6, 644–650.

    Article  Google Scholar 

  11. R.J. Mceliece. The Algebraic Theory of Convolutional Codes. In Handbook of Coding Theory, R. Brualdi, W.C. Huffman and V. Pless (eds.). Elsevier Science Publishers, Amsterdam, The Netherlands, 1998, to appear.

    Google Scholar 

  12. PH. Piret (1988). Convolutional Codes, an Algebraic Approach. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  13. J. Rosenthal (1997). Some Interesting Problems in Systems Theory which are of Fundamental Importance in Coding Theory, in Proc. of the 36th IEEE Conference on Decision and Control, 4574–4579, San Diego, California.

    Google Scholar 

  14. J. Rosenthal and J. M. Schumacher (1997). Realization by Inspection. IEEE Trans. Automat. Contr. AC-42, No. 9, 1257–1263.

    Article  MathSciNet  Google Scholar 

  15. J. Rosenthal, J. M. Schumacher and E.V. York (1996). On Behaviors and Convolutional Codes. IEEE Trans. Inform. Theory 42, No. 6, 1881–1891.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Rosenthal and E.V. York (Oct. 1997). BCH Convolutional Codes. Tech. rep., University of Notre Dame, Dept. of Mathematics, Preprint # 271. Available at http://www.nd.edu/~rosen/preprints. html

  17. R. M. Tanner (1983). A recursive approach to low complexity codes. IEEE Trans. Inform. Theory 27, No. 5, 533–547.

    Article  MathSciNet  Google Scholar 

  18. M.E. Valcher and E. Fornasini (1994). On 2D Finite Support Convolutional Codes: an Algebraic Approach. Multidim. Sys. and Sign. Proc. 5, 231–243.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Weiner (1998). Multidimensional Convolutional Codes. Ph.D. thesis, University of Notre Dame, Available at http://www.nd.edu/~rosen/preprints.html.

  20. N. Wiberg, H.A. Loeliger and R. Koetter (1995). Codes and Iterative Decoding on General Graphs. European Trans, on Telecommunications 6, No. 5, 513–525.

    Article  Google Scholar 

  21. E.V. York (1997). Algebraic Description and Construction of Error Correcting Codes, a Systems Theory Point of View. Ph.D. thesis, University of Notre Dame, Available at http://www.nd.edu/~rosen/preprints.html.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Rosenthal, J. (1999). An Algebraic Decoding Algorithm for Convolutional Codes. In: Picci, G., Gilliam, D.S. (eds) Dynamical Systems, Control, Coding, Computer Vision. Progress in Systems and Control Theory, vol 25. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8970-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8970-4_16

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9848-5

  • Online ISBN: 978-3-0348-8970-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics