Skip to main content

Isoperimetric inequalities and capacities on Riemannian manifolds

  • Conference paper
The Maz’ya Anniversary Collection

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 109))

Abstract

We discuss extensions of some results of V.G.Maz’ya to Riemannian manifolds. His proofs of the relationships between capacities, isoperimetric inequalities and Sobolev inequalities did not use specific properties of the Euclidean space. His method, transplanted to manifolds, gives a unified approach to such results as parabolicity criteria, eigenvalues estimates, heat kernel estimates, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlfors L.V., Sur le type d’une surface de Riemann, C.R. Acad. Sci. Paris, 201 (1935) 30–32.

    Google Scholar 

  2. Cheeger J., A lower bound for the smallest eigenvalue of the Laplacian, in: Problems in Analysis: A Symposium in honor of Salomon Bochner, Princeton University Press. Princeton, 1970. 195–199.

    Google Scholar 

  3. Cheng S.Y., Yau S.-T., Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., 28 (1975) 333–354.

    Article  MathSciNet  MATH  Google Scholar 

  4. Coulhon T., Grigor’yan A., On-diagonal lower bounds for heat kernels on non-compact manifolds and Markov chains, Duke Math. J., 89 no.l, (1997) 133–199.

    Article  MathSciNet  MATH  Google Scholar 

  5. Federer H., Curvature measures, Trans. Amer. Math. Soc, 93 (1959) no.3, 418–491.

    Article  MathSciNet  MATH  Google Scholar 

  6. Federer H., Fleming W.H., Normal and integral currents, Ann. Math., 72 (1960) 458–520.

    Article  MathSciNet  MATH  Google Scholar 

  7. FernÁndez, J.L., On the existence of Green’s function on Riemannian manifolds, Proc. Ams, 96 (1986) 284–286.

    Article  MATH  Google Scholar 

  8. Greene R., Wu W., Function theory of manifolds which possess a pole, Lecture Notes Math 699, Springer, 1979.

    Google Scholar 

  9. Grigor’yan A., On the existence of a Green function on a manifold, (in Russian) Uspekhi Matem. Nauk, 38 (1983) no.1, 161–162. Engl, transl. Russian Math. Surveys, 38 (1983) no.l, 190-191.

    MathSciNet  Google Scholar 

  10. Grigor’yan A., On the existence of positive fundamental solution of the Laplace equation on Riemannian manifolds, (in Russian) Matem. Sbornik, 128 (1985) no.3, 354–363. Engl, transl. Math. USSR Sb., 56 (1987) 349-358.

    MathSciNet  Google Scholar 

  11. Grigor’yan A., Heat kernel on a non-compact Riemannian manifold, in: 1993 Summer Research Institute on Stochastic Analysis, éd. M.Pinsky et al., Proceedings of Symposia in Pure Mathematics, 57 (1994) 239–263.

    Google Scholar 

  12. Grigor’yan A., Estimates of heat kernels on Riemannian manifolds, to appear in Proceedings of the Instructional Conference on Spectral Theory and Geometry, Edinburgh, April 1998.

    Google Scholar 

  13. Grigor’yan A., Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, to appear in Bull. Amer. Math. Soc.

    Google Scholar 

  14. Holopainen I., Positive solutions of quasilinear elliptic equations on Riemannian manifolds, Proc. London Math. Soc. (3), 65 (1992) 651–672.

    Article  MathSciNet  MATH  Google Scholar 

  15. Holopainen I., Volume growth, Green’s functions and parabolicity of ends, to appear in Duke Math. J.

    Google Scholar 

  16. Karp L., Subharmonic functions, harmonic mappings and isometric immersions, in: Seminar on Differential Geometry, ed. S.T.Yau, Ann. Math. Stud. 102, Pince-ton, 1982.

    Google Scholar 

  17. Keselman V.M., Zorich V.A., On conformai type of a Riemannian manifold, Funct. Anal. Appl., 30 (1996) 106–117.

    Article  MathSciNet  Google Scholar 

  18. Kronrod A.S., On functions of two variables, (in Russian) Uspechi Matem. Nauk, 5 (1950) no.1, 24–134.

    MathSciNet  MATH  Google Scholar 

  19. Lyons T., Sullivan D., Function theory, random paths and covering spaces, J. Diff. Geom., 19 (1984) 299–323.

    MathSciNet  MATH  Google Scholar 

  20. Maz’ya V.G., Classes of domains and embedding theorems for functional spaces, (in Russian) Dokl. Acad. Nauk Sssr, 133 no.3, (1960) 527–530. Engl, transl. Soviet Math. Dokl., vn1 (1961) 882-885.

    Google Scholar 

  21. Maz’ya V.G., The p-conductivity and theorems on imbedding certain function spaces into C-space, (in Russian) Dokl. Acad. Nauk SSSR, 140 (1961) 299–302. Engl, transl. Soviet Math. Dokl., 2 (1961) 1200-1203.

    Google Scholar 

  22. Maz’ya V.G., The negative spectrum of the n-dimensionai Schrödinger operator, (in Russian) Dokl. Acad. Nauk SSSR, 144 no.4, (1962) 721–722. Engl, transl. Soviet Math. Dokl., 3 (1962) 808-810.

    Google Scholar 

  23. Maz’ya V.G., On the theory of the n-dimensional Schrödinger operator, (in Russian) Izv. Acad. Nauk SSSR, Ser. Mat., 28 (1964) 1145–1172.

    Google Scholar 

  24. Maz’ya V.G., Embedding theorems and their applications, (in Russian) in: Trudy Simposiuma po teoremam vlozheniya, Baku 1966 god, ed. L.D. Kudryavzev, Nauka, Moskow, 1970.

    Google Scholar 

  25. Maz’ya V.G., On certain intergal inequalities for functions of many variables, (in Russian) Problemy Matematicheskogo Analiza, Leningrad. Univer., 3 (1972) 33–68. Engl, transl. J. Soviet Math., 1 (1973) 205-234.

    Google Scholar 

  26. Maz’ya V.G., Sobolev spaces, (in Russian) Izdat. Leningrad Gos. Univ. Leningrad, 1985. Engl, transl. Springer-Verlag, 1985.

    Google Scholar 

  27. Maz’ya V.G., Classes of domains, measures and capacities in the theory of differ-entiable functions, Encyclopaedia Math. Sci. 26, Springer, Berlin, 1991.

    Google Scholar 

  28. Nevanlinna R., Ein Satz über offene Riemannsche Flächen, Ann. Acad. Sci. Fenn. Part A., 54 (1940) 1–18.

    Google Scholar 

  29. Pólya G., Szegö, Isoperimetric inequalities in mathematical physics, Princeton University Press, Princeton, 1951.

    MATH  Google Scholar 

  30. Sturm K-Th., Sharp estimates for capacities and applications to symmetrical diffusions, Probability theory and related fields, 103 (1995) no.1, 73–89.

    Article  MathSciNet  MATH  Google Scholar 

  31. Varopoulos N.Th., Potential theory and diffusion of Riemannian manifolds, in: Conference on Harmonie Analysis in honor of Antoni Zygmund. Vol I, II, Wadsworth Math. Ser., Wadsworth, Belmont, Calif., 1983. 821–837.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Grigor’yan, A. (1999). Isoperimetric inequalities and capacities on Riemannian manifolds. In: Rossmann, J., Takáč, P., Wildenhain, G. (eds) The Maz’ya Anniversary Collection. Operator Theory: Advances and Applications, vol 109. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8675-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8675-8_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9726-6

  • Online ISBN: 978-3-0348-8675-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics