Skip to main content

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 118))

  • 231 Accesses

Abstract

The so-called convex-compactification theory is applied to an extension (=relaxation) of optimal control problems involving evolution distributed parameter systems. An infinite number of relaxed problems and corresponding Pontryagin maximum principles are thus obtained, including those described in the literature. A comparison and an abstract unifying viewpoint is thus made possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.U. Ahmed, Optimal control of a class of strongly nonlinear parabolic systems ,J. Math. Anal. Appl. 61 (1977), 188–207.

    Article  MathSciNet  MATH  Google Scholar 

  2. N.U. Ahmed, Properties of relaxed trajectories for a class of nonlinear evolution equations on a Banach space ,SIAM J. Control Optim. 21 (1983), 953–967.

    Article  MathSciNet  MATH  Google Scholar 

  3. N.U. Ahmed and K.L. Teo, Necessary conditions for optimality of Cauchy problems for parabolic partial differential systems ,SIAM J. Control 13 (1975), 981–993.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Basile and M. Mininni, An extension of the maximum principle for a class of optimal control problems in infinite-dimensional spaces ,SIAM J. Control Optim. 28 (1990), 1113–1135.

    Article  MathSciNet  MATH  Google Scholar 

  5. A.G. Butkovskii, Distributed Control Systems ,Elsevier, New York, 1969.

    Google Scholar 

  6. A.G. Chentsov, Finitely additive measures and minimum problems ,(In Russian) Kibernetika No.3 (1988), 67–70.

    Google Scholar 

  7. A.G. Chentsov, On the construction of solution to nonregular problems of optimal controls ,Problems Control Inf. Th. 20 (1991), 129–143.

    MathSciNet  MATH  Google Scholar 

  8. H.O. Fattorini: Relaxed controls in infinite dimensional control systems ,In: Proc. 5th Conf. on Control and Estimation of Distributed Parameter Systems, ISNM 100, Birkhäuser Verlag, Basel, 1991

    Google Scholar 

  9. H.O. Fattorini: Relaxation theorems, differential inclusions and Filippov’s theorem for relaxed controls in semilinear infinite dimensional systems ,J. Diff. Equations (to appear).

    Google Scholar 

  10. H.O. Fattorini: Existence theory and the maximum principle for relaxed inifinite dimensional optimal control problems. SIAM J. Control Optim. (to appear).

    Google Scholar 

  11. H.O. Fattorini: Relaxation in semilinear infinite dimensional control systems ,Markus Festschrift Volume, Lecture Notes in Pure and Appl. Math. 152, 1993.

    Google Scholar 

  12. H.O. Fattorini and H. Frankowska, Necessary conditions for infinite dimensional control problems ,(to appear).

    Google Scholar 

  13. H. Frankowska, The maximum principle for differential inclusions with end point constraints. SIAM J. Control 25 (1987).

    Google Scholar 

  14. R.V. Gamkrelidze: Principles of Optimal Control Theory ,(in Russian), Tbilisi Univ. Press, Tbilisi, 1977. Engl. Transl.: Plenum Press, New York, 1978.

    Book  Google Scholar 

  15. W. Kampowsky, Optimalit ätsbedingungen für Prozesse in Evolutionsgleichungen 1. Ordnung ,ZAMM 61 (1981), 501–512.

    Article  MathSciNet  MATH  Google Scholar 

  16. D.G.Luenberger: Optimization by Vector Space Methods. J.Wiley, New York, 1969.

    MATH  Google Scholar 

  17. N.S. Papageorgiou, Optimal control of nonlinear evolution inclusions ,J. Optim. Th. Appl. 67 (1990), 321–354.

    Article  MATH  Google Scholar 

  18. A.B. Pashaev and A.G. Chentsov, Generalized control problem in a class of finitely-additive measures ,(in Russian) Kibernetika No.2 (1986), 110–112.

    Google Scholar 

  19. L.S. Pontryagin, V.G. Boltjanski, R.V. Gamkrelidze, E.F. Miscenko: Mathematical Theory of Optimal Procceses ,(in Russian), Moscow, 1961.

    Google Scholar 

  20. T. Roubíček, Convex compactifications and special extensions of optimization problems ,Nonlinear Analysis, Th., Methods, Appl. 16, 1117–1126 (1991).

    Article  MATH  Google Scholar 

  21. T. Roubíček, A general view to relaxation methods in control theory ,Optimization 23 (1992), 261–268.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Roubíček, Minimization on convex compactifications and relaxation of nonconvex variational problems ,Advances in Math. Sciences and Appl. 1, 1–18 (1992).

    MATH  Google Scholar 

  23. T. Roubíček, Convex compactifications in optimal control theory ,In: Proc. 15th IFIP Conf. “ Modelling and Optimization of Systems” (Ed. P. Kall), Lecture Notes in Control and Inf. Sci. 180 (1992), Springer, Berlin, pp. 433–439.

    Google Scholar 

  24. T. Roubíček, Relaxation in Optimization Theory and Variational Calculus ,In preparation.

    Google Scholar 

  25. R. Sadigh-Esfandiari, J.M. Sloss, and J.C. Bruch Jr., Maximum principle for optimal control of distributed parameter systems with singular mass matrix ,J. Optim. Th. Appl. 66 (1990),211–226.

    Article  MathSciNet  MATH  Google Scholar 

  26. J.M. Sloss, J.C. Bruch Jr. and I.S. Sadek, A maximum principle for nonconservative self-adjoint systems ,IMA J. Math. Control Inf. 6 (1986), 199–216.

    Article  MathSciNet  Google Scholar 

  27. T. Zolezzi, Necessary conditions for optimal controls of elliptic or parabolic problems ,SIAM J. Control 10 (1972), 594–602.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this paper

Cite this paper

Roubíček, T. (1994). Various Relaxations in Optimal Control of Distributed Parameter Systems. In: Desch, W., Kappel, F., Kunisch, K. (eds) Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena. ISNM International Series of Numerical Mathematics, vol 118. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8530-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8530-0_18

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9666-5

  • Online ISBN: 978-3-0348-8530-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics