Skip to main content

Chaos, Noise and Biological Data

  • Chapter
Fractals in Biology and Medicine

Abstract

In the recent past there has been a torrent of papers concerned with data processing, see e.g., Casdagli and Eubank [1]. In large part this flood of interest has been associated with the realization that irregular time series, long thought to contain signal and noise, may in fact be chaotic. Noise is produced by the coupling of a signal to an infinite dimensional environment, e.g., the billions of neurons in the brain producing the erratic EEG signal. Chaos on the other hand is produced by the intrinsic deterministic dynamics of a low-dimensional nonlinear system. Difficulties arise when one attempts to discriminate between colored noise and chaos in erratic time series. The difficulties are associated with how one interprets the erratic nature of the time series. If it is noise, the random character of the data masks the underlying signal. If it is chaos, the statistical fluctuations contain information and can not be conveniently suppressed as one would noise. However, since quantities such as the correlation or information dimension of the time series can not distinguish between the two, the development of new measures are important and new methods of data processing required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Casdagli and S. Eubank, editors, Nonlinear Modeling and Forecasting, Addison-Wesley, Redwood City, CA (1992).

    Google Scholar 

  2. A.R. Osborne and A. Provenzale, Physica 35D, 357–381 (1989).

    Google Scholar 

  3. B.J. West and HJ. Mackey, J. Appl. Phys. 69(9), 6747–6749 (1991).

    Article  Google Scholar 

  4. U. Frisch and R. Morf, Phys. Rev. 23A, 2673 (1981).

    Google Scholar 

  5. H.S. Greenside, G. Ahlers, PC. Hohenberg and R.W. Waiden, Physica 5D, 322 (1982).

    Google Scholar 

  6. D. Sigeti and W. Horsthemke, Phys. Rev. 35A, 2276 (1987).

    Google Scholar 

  7. D. Ruelle, Phys. Rev. Lett. 56, 405 (1986).

    Article  PubMed  Google Scholar 

  8. F.T. Arecchi and F. Lisi, Phys. Rev. Lett 49, 94 (1982).

    Article  Google Scholar 

  9. M.A. Rubio, M. De La Torre and J.C. Antoranz, Physica 36D, 92 (1989).

    Google Scholar 

  10. H. Frijisaka and T. Yamada, Prog. Theor, Phys. 74, 918 (1985).

    Article  Google Scholar 

  11. B.J. West, H.J. Mackey and D. Chen, «Methods for distinguishing chaos from colored noise», in Patterns, Information and Chaos in Neuronal Systems, ed. B.J. West, World Scientific, Singapore (1993).

    Google Scholar 

  12. J.D. Farmer and J.J. Sidorowich, Phys. Rev. Lett. 59, 845 (1987).

    Article  PubMed  Google Scholar 

  13. J.D. Farmer and J.J. Sidorowich, Los Alamos preprint (1988).

    Google Scholar 

  14. F. Takens, in Lecture Notes in Mathematics 898, eds. D.A. Rand and L.S. Young, 366–381 (1981).

    Google Scholar 

  15. N. Wiener, Time Series, MIT Press (1949).

    Google Scholar 

  16. M. Casdagli, Physica 35D, 335 (1989).

    Google Scholar 

  17. G. Sugihara and R.M. May, «Nonlinear Forecasting as a way of distinguishing chaos from measurement error in time series,» Nature 344, 734 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. A.S. Lapedes and R. Farber, Los Alamos Technical Report LA-UR-87-2662.

    Google Scholar 

  19. A.M. Albano, A. Passamente, T. Hediger and M.E. Farrell, «Using neural nets to look for chaos,» Physica D 58, 1–9 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

West, B.J., Zhang, W., Mackey, H.J. (1994). Chaos, Noise and Biological Data. In: Nonnenmacher, T.F., Losa, G.A., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8501-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8501-0_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9652-8

  • Online ISBN: 978-3-0348-8501-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics