Skip to main content

Chromosomes in mitosis: chance and checkpoint

  • Chapter
Chromosomes Today

Abstract

Errors in chromosome distribution in meiosis and mitosis result in cells with missing or extra chromosomes, which can cause birth defects in children and cancer in adults. Chromosome distribution is determined by chromosome attachment to the mitotic spindle (reviewed in [1]). Proper attachment of daughter chromosomes to opposite spindle poles leads to movement to opposite poles in anaphase, with the fortunate consequence that each daughter cell contains one copy of each chromosome. Attachment begins with chance events, in which growing microtubules accidentally encounter a kinetochore, the microtubule attachment site on each chromosome (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nicklas RB (1997) How cells get the right chromosomes.Science275: 632–637

    Article  CAS  PubMed  Google Scholar 

  2. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events.Science246: 629–634

    Article  CAS  PubMed  Google Scholar 

  3. McIntosh JR (1991) Structural and mechanical control of mitotic progression.Cold Spring Harbour Symp Quant Biol56: 613–619

    Article  CAS  Google Scholar 

  4. Li X, Nicklas RB (1995) Mitotic forces control a cell-cycle checkpoint.Nature373: 630–632

    Article  CAS  PubMed  Google Scholar 

  5. Nicklas RB, Ward SC, Gorbsky GJ (1995) Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint.J Cell Biol130: 929–939

    Article  CAS  PubMed  Google Scholar 

  6. Gorbsky GJ (1997) Cell cycle checkpoints: arresting progress in mitosis.BioEssays19: 193–197

    Article  CAS  PubMed  Google Scholar 

  7. Rieder CL, Cole RW, Khodjakov A, Sluder G (1995) The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores.J Cell Biol130: 941–948

    Article  CAS  PubMed  Google Scholar 

  8. Wells WAE (1996) The spindle-assembly checkpoint: aiming for a perfect mitosis, every time.Trends Cell Biol6: 228–234

    Article  CAS  PubMed  Google Scholar 

  9. Li R, Murray AW (1991) Feedback control of mitosis in budding yeast.Cell66: 519–531

    Article  CAS  PubMed  Google Scholar 

  10. Fang G, Yu H, Kirschner MW (1998) Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and Gl.Mol Cell2: 163–171

    Article  CAS  PubMed  Google Scholar 

  11. Kallio M, Weinstein J, Daum JR, Burke DJ, Gorbsky GJ (1998) Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events.J Cell Biol141: 1393–1406

    Article  CAS  PubMed  Google Scholar 

  12. Hwang LH, Lau LF, Smith DL, Mistrot CA, Hardwick KG, Hwang ES, Amon A, Murray AW (1998) Budding yeast Cdc20: a target of the spindle checkpoint.Science279: 1041–1044

    Article  CAS  PubMed  Google Scholar 

  13. Kim SH, Lin DP, Matsumoto S, Kitazono A, Matsumoto T (1998) Fission yeast Slpl: an effector of the Mad2-dependent spindle checkpoint.Science279: 1045–1047

    Article  CAS  PubMed  Google Scholar 

  14. Fang G, Yu H, Kirschner MW (1998) The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation.Gene Develop12: 1871–1883

    Article  CAS  Google Scholar 

  15. Li Y, Gorbea C, Mahaffey D, Rechsteiner M, Benezra R (1997) MAD2 associates with the cyclo-some/anaphase-promoting complex and inhibits its activity.Proc Natl Acad Sci USA94: 12431–12436

    Article  CAS  PubMed  Google Scholar 

  16. Wassmann K, Benezra R (1998) Mad2 transiently associates with an APC/p55Cdc complex during mitosis.Proc Natl Acad Sci USA95: 11193–11198

    Article  CAS  PubMed  Google Scholar 

  17. Chen RH, Waters JC, Salmon ED, Murray AW (1996) Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores.Science274: 242–246

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Benezra R (1996) Identification of a human mitotic checkpoint gene: hsMAD2.Science274: 246–248

    Article  CAS  PubMed  Google Scholar 

  19. Waters JC, Chen R-H, Murray AW, Salmon ED (1998) Localization of Mad2 to kinetochores depends on microtubule attachment, not tension.J Cell Biol141: 1181–1191

    Article  CAS  PubMed  Google Scholar 

  20. Bousbaa H, Correia L, Gorbsky GJ, Sunkel CE (1997) Mitotic phosphoepitopes are expressed in Kc cells, neuroblasts and isolated chromosomes ofDrosophila melanogaster. J Cell Sci110: 1979–1988

    CAS  Google Scholar 

  21. Shapiro PS, Vaisberg E, Hunt AJ, Tolwinski NS, Whalen AM, McIntosh JR, Ahn NG (1998) Activation of the MKK/ERK pathway during somatic cell mitosis: direct interactions of active ERK with kinetochores and regulation of the mitotic 3F3/2 phosphoantigen.J Cell Biol142: 1533–1545

    Article  CAS  PubMed  Google Scholar 

  22. Waters JC, Chen R-H, Murray AW, Gorbsky GJ, Salmon ED, Nicklas RB (1999) Phosphorylated kinetochores bind Mad2in vitro:A link between error detection and checkpoint action in mitosis.Curr Biol9: 649–652

    Article  CAS  PubMed  Google Scholar 

  23. Chen RH, Shevchenko A, Mann M, Murray AW (1998) Spindle checkpoint protein xmadl recruits xmad2 to unattached kinetochores.J Cell Biol143: 283–295

    Article  CAS  PubMed  Google Scholar 

  24. Taylor SS, Ha E, McKeon F (1998) The human homologue of Bub3 is required for kinetochore localization of Bubl and a Mad3/Bubl-related protein kinase.J Cell Biol142: 1–11

    Article  CAS  PubMed  Google Scholar 

  25. Farr KA, Hoyt MA (1998) Bublp kinase activates theSaccharomyces cerevisiaespindle assembly checkpoint.Mol Cell Biol18: 2738–2747

    CAS  PubMed  Google Scholar 

  26. Zecevic M, Catling AD, Eblen ST, Renzi L, Hittle JC, Yen TJ, Gorbsky GJ, Weber MJ (1998) Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E.J Cell Biol142: 1547–1558

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Nicklas, R.B. (2000). Chromosomes in mitosis: chance and checkpoint. In: Olmo, E., Redi, C.A. (eds) Chromosomes Today. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8484-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8484-6_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9587-3

  • Online ISBN: 978-3-0348-8484-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics