Skip to main content

Meiotic pairing sites and genes involved in segregation of the X and Y chromosomes of Drosophila melanogaster

  • Chapter
Chromosomes Today

Abstract

A poorly understood aspect of chromosome structure and function is the role of specific chromosomal sites in meiotic pairing and segregation. Homologous chromosomes begin aligning early in meiotic prophase and by mid-prophase are fully synapsed, a state in which a ladder-like nucleoprotein structure known as synaptonemal complex connects the aligned chromosomal axes [1]. Alignment is necessary both for recombination and for accurate segregation at anaphase. However, it is not clear whether homology recognition and pairing takes place generally or at specific sites. In a variety of organisms, homologous chromosomes align early in meiotic prophase, prior to synapsis, sometimes making multiple string-like associations (reviewed in [2]). Fluorescent in situ hybridization (FISH) studies have shown that the earliest associations between homologous chromosomes of yeast also occur at multiple sites [3]. However, it has not been possible to determine in any organism whether the initial sites of association are specific or randomly chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. von Wettstein D, Rasmussen SW, Holm PB (1984) The synaptonemal complex in genetic segregation. Annu Rev Genet 18: 331–414

    Article  Google Scholar 

  2. Loidl J (1990) The initiation of meiotic chromosome pairing: the cytological view. Genome 33: 759–778

    Article  CAS  PubMed  Google Scholar 

  3. Weiner BM, Kleckner N (1994) Chromosome pairing via multiple interstitial inter-actions before and after meiosis in yeast. Cell 77: 977–991

    Article  CAS  PubMed  Google Scholar 

  4. Kleckner N, Padmore R, Bishop DK (1991) Meiotic chromosome metabolism: one view. Cold Spring Harbor Symp Quant Biol 56: 729–743

    Article  CAS  PubMed  Google Scholar 

  5. Padmore R, Cao L, Kleckner N (1991) Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66: 1239–1256

    CAS  Google Scholar 

  6. Morgan TH (1912) Complete linkage in the second chromosome of Drosophila melanogaster. Science 36: 719–720

    Google Scholar 

  7. Meyer GF (1960) The fine structure of spermatocyte nuclei of Drosophila melanogaster. In: AL Houwink, BJ Spit (eds): Proceedings of the European Regional Conference on Electron Microscopy. Die Nederlandse Verening voor Electronmicroscopic Delft, Delft, 951–954

    Google Scholar 

  8. Chovnick A, Ballantyne GH, Baillie DL, Holm DG (1971) Gene conversion in higher organisms: half-tetrad analysis of recombination within the rosy cistron of Drosophila melanogaster. Genetics 66: 315–329

    Google Scholar 

  9. Cooper KW (1964) Meiotic conjunctive elements not involving chiasmata. Proc Nail Acad Sci USA 52: 1248–1255

    Article  CAS  Google Scholar 

  10. Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49: 727–764

    Article  CAS  PubMed  Google Scholar 

  11. Lohe AR, Hilliker AJ, Roberts PA (1993) Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134: 1149–1174

    CAS  Google Scholar 

  12. McKee BD (1996) The license to pair: identification of meiotic pairing sites in Drosophila. Chromosoma 105: 135–141

    CAS  Google Scholar 

  13. Park H-S, Yamamoto M-T (1995) The centric region of the X chromosome rDNA functions in male meiotic pairing in Drosophila melanogaster. Chromosoma 103: 700–707

    CAS  Google Scholar 

  14. McKee B, Lindsley DL (1987) Inseparability of X-heterochromatic functions responsible for X:Y pairing, meiotic drive, and male fertility in Drosophila melanogaster males. Genetics 116: 399–407

    CAS  PubMed  Google Scholar 

  15. Karpen GH, Le M-H, Le H (1996) Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273: 118–122

    Article  CAS  PubMed  Google Scholar 

  16. McKee BD (1998) Pairing sites and the role of chromosome pairing in meiosis and spermatogenesis in male Drosophila. Curr Topic Develop Biol 37: 77–115

    Article  CAS  Google Scholar 

  17. Hawley RS, Irick H, Zitron AE, Haddox DA, Lohe A, New C, Whitley MD, Arbel T, Jong J, McKim K et al (1993) There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Develop Genet 13: 440–467

    Article  Google Scholar 

  18. Rubin GM, Spradling AC (1983) Vectors for P element-mediated gene transfer in Drosophila. Nucl Acid Res 11: 6341–6351

    Article  CAS  Google Scholar 

  19. McKee BD, Karpen GH (1990) Drosophila ribosomal RNA genes function as an X-Y meiotic pairing site during male meiosis. Cell 61: 61–72

    Article  CAS  PubMed  Google Scholar 

  20. Merrill CJ, Chakravarti D, Habera L, Das S, Eisenhour L, McKee BD (1992) Promoter-containing ribosomal DNA fragments function as X-Y meiotic pairing sites in D. melanogaster males. Develop Genet 13: 468–484

    Article  CAS  Google Scholar 

  21. McKee BD, Habera L, Vrana JA (1992) Evidence that intergenic spacer repeats of Drosophila melanogaster rRNA genes function as X-Y pairing sites in male meiosis, and a general model of achiasmatic pairing. Genetics 132: 529–544

    CAS  PubMed  Google Scholar 

  22. Ren X-J, Eisenhour L, Hong C-S, Lee Y, McKee BD (1997) Roles of rDNA spacer and transcription unit sequences in X-Y meiotic pairing in Drosophila melanogaster. Chromosoma 106: 29–36

    CAS  Google Scholar 

  23. Simeone A, La Volpe A, Boncinelli E (1985) Nucleotide sequence of a complete ribosomal spacer of D. melanogaster. Nucl Acid Res 13: 1089–1101

    Article  CAS  Google Scholar 

  24. Lohe AR, Roberts PA (1990) An unusual Y chromosome of Drosophila simulans carrying amplified rDNA spacer without rRNA genes. Genetics 125: 399–406

    CAS  PubMed  Google Scholar 

  25. Coen ES, Dover GA (1982) Multiple poll initiation sequences in rDNA spacers of Drosophila melanogaster. Nucl Acid Res 10: 7017–7026

    CAS  Google Scholar 

  26. Ault JG, Rieder CL (1994) Meiosis in Drosophila males. I. The question of separate conjunctive mechanisms for the XY and autosomal bivalents. Chromosoma 103: 352–356

    Article  CAS  PubMed  Google Scholar 

  27. Sandler L, Lindsley DL, Nicoletti B, Trippa G (1968) Mutants affecting meiosis in natural populations of Drosophila melanogaster. Genetics 60: 525–558

    CAS  Google Scholar 

  28. Ivy J (1981) Mutations that disrupt meiosis in males of Drosophila melanogaster. Ph.D. thesis, University of California at San Diego, CA

    Google Scholar 

  29. Gethmann R (1974) Meiosis in male Drosophila melanogaster. Genetics 78: 1127–1142

    CAS  PubMed  Google Scholar 

  30. Baker BS, Carpenter ATC (1972) Genetic analysis of sex chromosomal meiotic mutants in Drosophila melanogaster. Genetics 71: 255–286

    CAS  Google Scholar 

  31. Moore DP, Miyazaki WY, Tomkiel JE, On-Weaver TL (1994) Double or nothing: a Drosophila mutation affecting meiotic chromosome segregation in both females and males. Genetics 136: 953–964

    CAS  PubMed  Google Scholar 

  32. Livak KJ (1984) Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics 107: 611–634

    CAS  PubMed  Google Scholar 

  33. Hardy RW, Lindsley DL, Livak KJ, Lewis B, Silversten AL, Joslyn GL, Edwards J, Bonaccorsi S (1984) Cytogenetic analysis of a segment of the Y chromosome of Drosophila melanogaster. Genetics 107: 591–610

    CAS  Google Scholar 

  34. Palumbo G, Bonnacorsi S, Robbins L, Pimpinelli S (1994) Genetic analysis of Stellate elements of Drosophila melanogaster. Genetics 138: 1181–1197

    CAS  Google Scholar 

  35. Orr-Weaver TL (1995) Meiosis in Drosophila: seeing is believing. Proc Natl Acad Sci USA 92: 10443–10449

    Article  CAS  PubMed  Google Scholar 

  36. Sunkel CE, Glover DM (1988) polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J Cell Sci 89: 25–38

    PubMed  Google Scholar 

  37. Cenci G, Rawson RB, Belloni G, Castrillon DH, Tudor M, Petrucci R, Goldberg ML, Wasserman SA, Gatti M (1997) UbcDI, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behavior. Gene Develop 11: 863–875

    Article  CAS  Google Scholar 

  38. Cenci G, Belloni G, Santolamazza C, Dimitri P, Gatti M (1998) Genetic, cytological and molecular analysis of pendolino, a gene that controls telomere behavior in Drosophila melanogaster. A Conf Dros Res 39: 777B

    Google Scholar 

  39. Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo 1 1, a member of a widely conserved protein family. Cell 88: 375–384

    Article  CAS  PubMed  Google Scholar 

  40. Hari KL, Santerre A, Sekelsky JJ, McKim KS, Boyd JB, Hawley RS (1995) The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell 82: 815–821

    Article  CAS  PubMed  Google Scholar 

  41. Sekelsky JJ, McKim KS, Chin GM, Hawley RS (1995) The Drosophila meiotic recombination gene mei-9 encodes a homologue of the yeast excision repair protein Rad 1. Genetics 141: 619–627

    CAS  PubMed  Google Scholar 

  42. McKim KS, Hayashi-Hagihara A (1998) mei-W68 in Drosophila melanogaster encodes a Spol 1 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Gene Develop 12: 2932–2942

    Article  CAS  Google Scholar 

  43. Boyd JB, Golino MD, Shaw ICES, Osgood CJ, Green MM (1981) Third chromosome mutagensensitive mutants of Drosophila melanogaster. Genetics 97: 607–623

    CAS  Google Scholar 

  44. Henderson DS, Bailey DA, Sinclair DA, Grigliatti TA (1987) Isolation and characterization of second chromosome mutagen-sensitive mutations in Drosophila melanogaster. Mutat Res 177: 83–93

    CAS  Google Scholar 

  45. Dusenberry RL, Smith PD (1996) Cellular responses to DNA damage in Drosophila melanogaster. Mutat Res 364: 133–145

    Google Scholar 

  46. de Buendia PG (1998) Search for DNA repair pathways in Drosophila melanogaster. Mutat Res 407: 67–84

    Google Scholar 

  47. Sekelsky JJ, Burtis KC, Hawley RS (1998) The pleiotropy of DNA repair genes in Drosophila melanogaster. Genetics 148: 1587–1598

    CAS  Google Scholar 

  48. Sekelsky J, Brodsky M, Rubin G, Hawley S (1998) mus304 encodes a RecQ helicase-related protein required for a cell cycle checkpoint and normal meiotic chromosome behavior. A Conf Dros Res 39: 43

    Google Scholar 

  49. Eeken JC, deJong A, Romeijn R, Pastink A (1997) Molecular and genetic characterization of the MMS-sensitive locus mus205, the Drosophila homolog of the S. cerevisiae REV3 gene, encoding a non-essential DNA polymerase. A Conf Dms Res 38: 271C

    Google Scholar 

  50. Henderson DS, Banga SS, Grigliatti TA, Boyd JB (1994) Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. EMBO J 13: 1450–1459

    CAS  PubMed  Google Scholar 

  51. Boyd JB, Sakaguchi K, Harris PV (1990) mus308 mutants of Drosophila exhibit hypersensitivity to DNA cross-linking agents and are defective in a deoxyribonuclease. Genetics 125: 813–819

    CAS  PubMed  Google Scholar 

  52. Harris PV, Mazina OM, Leonhardt EA, Case RB, Boyd JB, Burtis KC (1996) Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes. Mol Cell Biol 16: 5764–5771

    CAS  PubMed  Google Scholar 

  53. Beall EL, Rio DC (1996) Drosophila IRBP/Ku70 corresponds to the mutagen-sensitive mus309 gene and is involved in P-element excision in vivo. Gene Develop 10: 921–933

    Article  CAS  Google Scholar 

  54. Lindsley DL, Zimm G (1992) The genome of Drosophila melanogaster. Academic Press, New York, London

    Google Scholar 

  55. Tearle R, Nusslein-Volhard C (1987) Tubingen mutants stocklist. Drosophila Inform Service 66: 209–226

    Google Scholar 

  56. Schupbach T, Wieschaus E (1991) Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129: 1119–1136

    CAS  PubMed  Google Scholar 

  57. Gillespie DE, Berg CA (1995) homeless is required for RNA localization in Drosophila oogenesis and encodes a new member of the DE-H family of RNA-dependent ATPases. Gene Develop 9: 2495–2508

    Article  CAS  Google Scholar 

  58. Ghabrial A, Ray RP, Schupbach T (1998) okra and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Gene Develop 12: 2711–2723

    Article  CAS  Google Scholar 

  59. Kooistra R, Vreeken K, Zonneveld JBM, de Jong A, Eeken JCJ, Osgood CJ, Buerstedde JM, Lohman PHM, Pastink A (1997) The Drosophila RAD54 homolog, DmRAD54, is involved in the repair of radiation damage and recombination. Mol Cell Biol 17: 6097–6104

    CAS  PubMed  Google Scholar 

  60. Cummings WJ, Zolan ME (1998) Functions of DNA repair genes during meiosis. Curr Topic Develop Biol 37: 117–141

    Article  CAS  Google Scholar 

  61. Bishop DK, Park D, Xu L, Kleckner N (1992) DMC1: A meiosis-specific yeast homolog of E. coli RecA required for recombination, synaptonemal complex formation and cell cycle progression. Cell 79: 1081–1092

    Article  Google Scholar 

  62. Klein HL (1997) RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147: 1533–1543

    CAS  PubMed  Google Scholar 

  63. Gonzalez-Reyes A, Elliott H, St Johnston D (1997) Oocyte determination and the origin of polarity in Drosophila: the role of the spindle genes. Development 124: 4927–4937

    CAS  PubMed  Google Scholar 

  64. Kuroda MI, Kernan MJ, Kreber R, Ganetzky B, Baker BS (1991) The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66: 935–947

    Article  CAS  Google Scholar 

  65. McKee BD, Ren X-J, Hong C-S (1996) A recA-like gene in Drosophila melanogaster that is expressed at high levels in female but not male meiotic tissues. Chromosoma 104: 479–488

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

McKee, B.D., Hong, Cs., Yoo, S. (2000). Meiotic pairing sites and genes involved in segregation of the X and Y chromosomes of Drosophila melanogaster . In: Olmo, E., Redi, C.A. (eds) Chromosomes Today. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8484-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8484-6_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9587-3

  • Online ISBN: 978-3-0348-8484-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics