Skip to main content

Role of Nitric Oxide in the Regulation of Pulmonary Vascular Tone

  • Chapter
Nitric Oxide in Pulmonary Processes

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

  • 87 Accesses

Abstract

The pulmonary circulation is a low pressure, low resistance, high flow system regulated through both active and passive factors [14]. Active factors alter pulmonary vascular resistance and tone by causing contraction or relaxation of vascular smooth muscle and include neural and humoral mechanisms, and gaseous regulators. Passive factors alter pulmonary vascular resistance and/or blood flow independently of changes in vascular tone and include variation in cardiac output, left atrial, airway and interstitial pressures, gravitational force, and vascular obstruction or recruitment. Although passive factors may be important, the pulmonary circulation is regulated overwhelmingly by active control mechanisms [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daly IDB, Hebb C (1986) Innervation of the lungs. In: Daly IDB, Hebb C (eds). Pulmonary and bronchial vascular systems. Baltimore: William & Wilkins, 89–117

    Google Scholar 

  2. McLean JR (1986) Pulmonary vascular innervation. In: Bergofsky EH (ed) Abnormal pulmonary circulation. London: Churchill Livingstone, 27–81

    Google Scholar 

  3. Hyman AL, Lippton HI, Dempesy CW, Fontana CJ, Richardson D, Rieck R et al (1989) Autonomic control of the pulmonary circulation. In: Weir EK, Reeves JT (eds). Pulmonary vascular physiology and pathophysiology. New York: Marcel Dekker, 291–324

    Google Scholar 

  4. Barnes PJ, Liu SF (1995) Regulation of pulmonary vascular tone. Pharmacol Rev 47: 87–131

    PubMed  CAS  Google Scholar 

  5. Liu SF, Barnes PJ (1994) Role of endothelium in the control of pulmonary vascular tone. Endothelium 2: 11–33

    Article  CAS  Google Scholar 

  6. Kadowitz PJ, Hyman AL (1973) Effect of sympathetic nerve stimulation on pulmonary vascular resistance in the dogs. Circ Res 32: 221–227

    Article  PubMed  CAS  Google Scholar 

  7. Kadowitz PJ, Knight DS, Hibbs RG, Ellison JP, Joiner PD, Brody MJ et al (1976) Influence of 5- and 6-hydroxydopamine on adrenergic transmission and nerve terminal morphology in the canine pulmonary vascular bed. Cir Res 39: 191–199

    Article  CAS  Google Scholar 

  8. Murray PA, Lodato RF, Michael JR (1986) Neural antagonists modulate pulmonary vascular pressure-flow plots in conscious dogs. J Appl Physiol 60: 1900–1907

    Article  PubMed  CAS  Google Scholar 

  9. Liu SF, Barnes PJ (1997) Neural control of pulmonary vascular tone. In: Crystal RG, West JB, Barnes PJ, Weibel ER (eds) The Lung, Scientific Foundations. Philadelphia: Lippincott-Raven Publisher, 1457–1472

    Google Scholar 

  10. Cocks TM, Angus JA (1983) Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305: 627–630

    Article  PubMed  CAS  Google Scholar 

  11. Greenberg S, Diecke FPJ, Peevy K, Tanaka TP (1989) Endothelium modulates adrenergic neurotransmission to canine pulmonary arteries and veins. Eur J Pharmacol 162: 67–80

    Article  PubMed  CAS  Google Scholar 

  12. Cederqvist B, Gustafsson LE (1994) Modulation of neuroeffector transmission in guinea-pig pulmonary artery and vas deferens by endogenous nitric oxide. Acta Physiol Scand 150: 75–81

    Article  PubMed  CAS  Google Scholar 

  13. Schwarz P, Diem R, Dun NJ, Forstermann U (1995) Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat heart sympathetic nerves. Cir Res 77: 841–848

    Article  CAS  Google Scholar 

  14. Seilicovich A, Lasaga M, Befumo M, Duvilanski BH, del Carmen Diaz M et al (1995) Nitric oxide inhibits the release of norepinephrine and dopamine from the medial basal hypothalamus of the rat. Proc Natl Acad Sci USA 92: 11299–11302

    Article  PubMed  CAS  Google Scholar 

  15. Ceccatelli S, Lundberg JM, Zhang X, Aman K, Hokfelt T (1994) Immunohistochemical demonstration of nitric oxide synthase in the peripheral nervous system. Brain Res 656: 381–395

    Article  PubMed  CAS  Google Scholar 

  16. Fischer A, Hoffman B, Mayer B, Kummer W (1993) Nitric oxide synthase in the innervation of the human respiratory tract. Am Rev Respir Dis 147: A662

    Google Scholar 

  17. Liu SF, Crawley DE, Rohde JAL, Evans TW, Barnes PJ (1992) Role of nitric oxide and guanosine 3’-,5’-cyclic monophosphate in mediating nonadrenergic noncholinergic neural relaxation in guinea-pig pulmonary arteries. Br J Pharmacol 107: 861–866

    Article  PubMed  CAS  Google Scholar 

  18. Tesfamariam B, Cohen RA (1988) Inhibition of adrenergic vasoconstriction by endothelial cell shear stress. Circ Res 63: 720–725

    Article  PubMed  CAS  Google Scholar 

  19. Lamontagne D, Pohl U, Busse R (1992) Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circ Res 70: 123–130

    Article  PubMed  CAS  Google Scholar 

  20. Minami N, Imai Y, Hashimoto J, Abe K (1995) The role of nitric oxide in the baroreceptorcardiac reflex in conscious Wistar rats. Am JPhysiol 269: H851–H855

    CAS  Google Scholar 

  21. Daly IDB, Hebb C (1952) Pulmonary vasomotor fibbers in the cervical vago sympathetic nerve of dog. Q J Exp Physiol 37: 19–43

    Google Scholar 

  22. Colebatch HJH, Halmagyi DFJ (1963) Effect of vagotomy and vagal stimulation on lung mechanics and circulation. J Appl Physiol 18: 871–878

    Google Scholar 

  23. Nandiwad PA, Hyman AL, Kadowitz PJ (1983) Pulmonary vasodilator responses to vagal stimulation and acetylcholine in the cat. Circ Res 53: 86–95

    Article  Google Scholar 

  24. McMahon TJ, Hood JS, Kadowitz PJ (1992) Pulmonary vasodilator response to vagal stimulation is blocked by N-omega-nitro-L-arginine methyl ester in the cat. Circ Res 70: 364–369

    Article  Google Scholar 

  25. Fritts J, Harris P, Clauss RH, Odell JE, Cournand A (1958) The effect of acetylcholine on the human pulmonary circulation under normal and hypoxic conditions. J Clin Invest 37: 99–110

    Article  PubMed  Google Scholar 

  26. Wilson PS, Khimenko PL, Barnard JW, Moore TM, Taylor AE (1995) Muscarinic agonists and antagonists cause vasodilation in isolated rat lung. J Appl Physiol 78: 1404–1411

    PubMed  CAS  Google Scholar 

  27. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376

    Article  PubMed  CAS  Google Scholar 

  28. McMahon TJ, Kadowitz PJ (1992) Methylene blue inhibits neurogenic cholinergic vasodilator responses in the pulmonary vascular bed of the cat. Am J Physiol 263: L575–L584

    Google Scholar 

  29. Hebeiß K, Kilbinger H (1996) Differential effects of nitric oxide donors on basal and electrically evoked release of acetylcholine from guinea-pig myenteric neurons. Br J Pharmacol 118: 2073–2076

    Article  PubMed  Google Scholar 

  30. Inoue T, Kannan MS (1988) Nonadrenergic and noncholinergic excitatory neurotransmission in rat intrapulmonary artery. Am J Physiol 254: H1142–H1148

    PubMed  CAS  Google Scholar 

  31. Maggi CA, Patachini R, Perretti F, Tramontana M, Manzini S, Geppetti P et al (1990) Sensory nerves, vascular endothelium and neurogenic relaxation of the guinea-pig isolated pulmonary artery. Naunyn-Schmied Arch Pharmacol 342: 78–84

    Article  CAS  Google Scholar 

  32. Scott JA, Craig I, McCormack DG (1996) Nonadrenergic noncholinergic relaxation of human pulmonary arteries is partially mediated by nitric oxide. Am J Respir Crit Care Med 154: 629–632

    PubMed  CAS  Google Scholar 

  33. Marting CR (1987) Sensory nerves containing tachykinins and CGRP in the lower airways. Functional implications for bronchoconstriction, vasodilatation and protein extravasation. Acta Physiol Scand 563 (Suppl): 1–57

    Google Scholar 

  34. Dey RD, Shannon WA, Said JR (1981) Localization of VIP-immunoreactive nerves in airways and pulmonary vessels of dogs, cat, and human subjects. Cell Tissue Res 220: 231–238

    PubMed  CAS  Google Scholar 

  35. Kubota E, Sata T, Soas AH, Paul S, Said SI (1985) Vasoactive intestinal peptide as a possible transmitter of nonadrenergic, noncholinergic relaxation of pulmonary artery. Trans Assoc Am Physicians 98: 233–242

    CAS  Google Scholar 

  36. Mohri K, Takeuchi K, Shinozuka K, Bjur RA, Westfall DP (1993) Simultaneous determination of nerve-induced adenine nucleotides and nucleosides released from rabbit pulmonary artery. Anal Biochem 210: 262–267

    Article  PubMed  CAS  Google Scholar 

  37. Rand MJ, Li CG (1995) Nitric oxide as a neurotransmitter in peripheral nerves: nature of transmitter and mechanism of transmission. Annu Rev Physiol 57: 659–682

    Article  PubMed  CAS  Google Scholar 

  38. Chakder S, Rattan S (1996) Evidence for VIP-induced increase in NO production in myenteric neurons of opossum internal and sphincter. Am J Physiol 270: G492–G497

    PubMed  CAS  Google Scholar 

  39. Mashimo H, He XD, Huang PL, Fishman MC, Goyal RK (1996) Neuronal constitutive nitric oxide synthase is involved in murine enteric inhibitory neurotransmission. J Clin Invest 98: 8–13

    Article  PubMed  CAS  Google Scholar 

  40. Klimaschewki L, Kummer W, Mayer B, Couraud JY, Preissler U, Philippin B et al (1992) Nitric oxide synthase in cardiac nerve fibers and neurons of rat and guinea-pig heart. Cir Res 71: 1533–1537

    Article  Google Scholar 

  41. Shimosegawa T, Toyota T (1994) NADPH-diaphorase activity as a marker for nitric oxide synthase in neurons of the guinea-pig respiratory tract. Am J Respir Crit Care Med 150: 1402–1410

    PubMed  CAS  Google Scholar 

  42. Grider JR, Murthy KS, Kin J, Makhlouf GM (1992) Stimulation of nitric oxide from muscle cells by VIP: prejunctional enhancement of VIP release. Am J Physiol 262: 774–778

    Google Scholar 

  43. Abman SH, Chatfield BA, Hall SL, McMurtry IF (1990) Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am J Physiol 259: H1921–H1927

    PubMed  CAS  Google Scholar 

  44. Konduri GG, Gervasio CT, Theodorou AA (1993) Role of adenosine triphosphate and adenosine in oxygen-induced pulmonary vasodilatation in fetal lambs. Pediatr Res 33: 533–539

    Article  PubMed  CAS  Google Scholar 

  45. McMurtry I (1986) Humoral control. In: Bergosflcy EH (ed) Abnormal Pulmonary Circulation. London: Churchill Livingstone, 83–125

    Google Scholar 

  46. Cooke JP, Rossitch E Jr, Andon NA, Loscalzo J, Dzau VJ (1991) Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest 88: 1663–1671

    Article  PubMed  CAS  Google Scholar 

  47. Arnal J-F, Warin L, Michel J-B (1992) Determinants of aortic guanosine monophosphate in hypertension induced by chronic inhibition of nitric oxide synthase. J Clin Invest 90: 647–652

    Article  PubMed  CAS  Google Scholar 

  48. Nishiwaki K, Nyhan DP, Rock P, Desai PM, Peterson WP, Pribble CG et al (1992) N omeganitro-L-arginine and pulmonary vascular pressure-flow relationship in conscious dogs. Am J Physiol 262: H1331–H1337

    PubMed  CAS  Google Scholar 

  49. Barnard JW, Wilson PS, Moore TM, Thompson JW, Taylor AE (1993) Effect of nitric oxide and cyclooxygenase products on vascular resistance in dog and rat lungs. J Appl Physiol 74: 2940–2949

    PubMed  CAS  Google Scholar 

  50. Oka M, Hasunuma K, Webb SA, Stelzner TJ, Rodman DM, McMurtry IF (1993) EDRF suppresses an unidentified vasoconstritor mechanism in hypertensive rat lungs. Am J Physiol 264: L587–L597

    PubMed  CAS  Google Scholar 

  51. Barer G, Emergy C, Stewart A, Bee D, Howard P (1993) Endothelial control of the pulmonary circulation in normal and chronic hypoxic rats. J Physiol 463: 1–16

    PubMed  CAS  Google Scholar 

  52. Celermajer DS, Dollery C, Burch M, Deanfield JE (1994) Role of endothelium in the maintenance of low pulmonary vascular tone in normal children. Circulation 89: 2041–2044

    Article  PubMed  CAS  Google Scholar 

  53. Stamler JS, Loh E, Roddy M, Currie KE, Creager MA (1994) Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation 89: 2035–2040

    Article  PubMed  CAS  Google Scholar 

  54. Von Euler US, Liljestrand G (1947) Observations on the pulmonary arterial pressure in the cat. Acta Physiol Scand 12: 301–320

    Article  Google Scholar 

  55. Murray TR, Chen L, Marshall BE, Macarak EJ (1990) Hypoxic contraction of cultured pulmonary vascular smooth muscle cells. Am J Respir Cell Mol Biol 3: 457–465

    PubMed  CAS  Google Scholar 

  56. Cornfield DN, Stevens T, McMurtry IF, Abman SH, Rodman DM (1994) Acute hypoxia causes membrane depolarization and calcium influx in fetal pulmonary artery smooth muscle cells. Am J 266: L469–L475

    CAS  Google Scholar 

  57. Rounds S, McMurtry IF (1981) Inhibitors of oxidative ATP production cause transient vaso-constriction and block subsequent pressor responses in rat lungs. Circ Res 48: 393–400

    Article  PubMed  CAS  Google Scholar 

  58. Miller MA, Hales CA (1979) Role of cytochrome P-450 in alveolar hypoxic pulmonary vasoconstriction in dogs. J Clin Invest 64: 666–673

    Article  PubMed  CAS  Google Scholar 

  59. Archer SL, Will IA, Weir EK (1986) Redox status in the control of pulmonary vascular tone. Herz 11: 127–141

    PubMed  CAS  Google Scholar 

  60. Brashers VL, Peach MJ, Rose CEJ (1988) Augmentation of hypoxic pulmonary vasoconstriction in the isolated perfused rat lung by in vitro antagonists on endothelium-dependent relaxation. J Clin Invest 82: 1495–1502

    Article  PubMed  CAS  Google Scholar 

  61. Sprauge RS, Tjiemermann C, Vane JR (1992) Endogenous endothelium-derived relaxing factor opposes hypoxic pulmonary vasoconstriction and supports blood to hypoxic alveoli in anesthetized rabbits. Proc Natl Acad Sci USA 89: 8711–8715

    Article  Google Scholar 

  62. Liu SF, Crawley DE, Barnes PJ, Evans TW (1991) Endothelium derived nitric oxide inhibits hypoxic pulmonary vasoconstriction in isolated blood perfused rat lungs. Am Rev Respir Dis 143: 32–37

    PubMed  CAS  Google Scholar 

  63. Mazmanian GM, Baudet B, Brink C, Cerrina J, Kirkiachrian S, Weiss M (1989) Methylene blue potentiates vascular reactivity in isolated rat lungs. J Appl Physiol 66: 1040–1045

    PubMed  CAS  Google Scholar 

  64. Fineman JR, Chang R, Soifer S (1991) L-arginine, a precursor of EDRF in vitro, produces pulmonary vasodilati on in the lambs. Am J Physiol 261: H1563–H1569

    PubMed  CAS  Google Scholar 

  65. Ogata M, Ohe M, Katayose D, Takishima T (1992) Modulatory role of EDRF in hypoxic contraction of isolated porcine pulmonary arteries. Am J Physiol 262: H691–H697

    PubMed  CAS  Google Scholar 

  66. Liao JK, Zulueta JJ, Yu FS, Peng HB, Cote CG, Hassoun PM (1995) Regulation of bovine endothelial constitutive nitric oxide synthase by oxygen. J Clin Invest 96: 2661–2666

    Article  PubMed  CAS  Google Scholar 

  67. Johns RA, Linden JM, Reach MJ (1989) Endothelium-dependent relaxation and cyclic GMP accumulation in rabbit martery are selectively impaired by moderate hypoxia. Cir Res 65: 1508–1515

    Article  CAS  Google Scholar 

  68. Rodman DM, Yamaguchi T, Hasunuma K, O’Brien RF, McMurtry IF (1990) Effects of hypoxia on endothelium-dependent relaxation of rat pulmonary artery. Am J Physiol 258: L207–L214

    PubMed  CAS  Google Scholar 

  69. Chand N, Altura BM (1981) Acetylcholine and bradykinin relax intrapulmonary arteries by acting on endothelial cells: role in lung vascular diseases. Science 213: 1376–1379

    Article  PubMed  CAS  Google Scholar 

  70. Shaul PW, Wells LB, Horning KM (1993) Acute and prolonged hypoxia attenuate endothelial nitric oxide production in rat pulmonary arteries by different mechanisms. J Cardiovasc Pharmacol 22: 819–827

    Article  PubMed  CAS  Google Scholar 

  71. Hampl V, Cornfield DN, Cowan NJ, Archer SL (1995) Hypoxia potentiates nitric oxide synthesis and transiently increases cytosilic calcium levels in pulmonary artery endothelial cells. Eur Respir J 8: 515–522

    PubMed  CAS  Google Scholar 

  72. Nelin LD, Thomas CJ, Dawson CA (1996) Effect of hypoxia on nitric oxide production in neonatal pig lung. Am J Physiol 271: H8–14

    PubMed  CAS  Google Scholar 

  73. Grimminger F, Spriestersbach R, Weissmann N, Walmrath D, Seeger W (1995) Nitric oxide generation and hypoxic vasoconstriction in buffer-perfused rabbit lungs. J Appl Physiol 78: 1509–1515

    PubMed  CAS  Google Scholar 

  74. Dinh-Xuan AT, Higenbottam TW, Clelland CA, Pepke-Zaba J, Cremona G, Butt AY et al (1991) Impairment of endothelium-dependent pulmonary artery relaxation in chronic obstructive lung disease. N Engl J Med 324: 1539–1547

    Article  PubMed  CAS  Google Scholar 

  75. Block ER, Herrera H, Couch M (1995) Hypoxia inhibits L-arginine uptake by pulmonary artery endothelial cells. Am J Physiol 269: L574–80

    PubMed  CAS  Google Scholar 

  76. Su Y, Block ER (1995) Hypoxia inhibits L-arginine synthesis from L-citrulline in procine pulmonary artery endothelial cells. Am J Physiol 269: L581–7

    PubMed  CAS  Google Scholar 

  77. Giaid A, Saleh D (1995) Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333: 214–221

    Article  PubMed  CAS  Google Scholar 

  78. North AJ, Lau KS, Brannon TS, Wu LC, Wells LB, German Z, Shaul PW (1996) Oxygen upregulates nitric oxide synthase gene expression in ovine fetal pulmonary artery endothelial cells. Am J Physiol 270: L643–L649

    PubMed  CAS  Google Scholar 

  79. Isaacson TC, Hampl V, Weir EK, Nelson DP, Archer SL (1994) Increased endothelium-derived NO in hypertensive pulmonary circulation of chronically hypoxic rats. J Appl Physiol 76: 933–940

    PubMed  CAS  Google Scholar 

  80. Resta TC, Walker BR (1996) Chronic hypoxia selectively augments endothelium-dependent pulmonary arterial vasodilation. Am J Physiol 270: H888–H896

    PubMed  CAS  Google Scholar 

  81. Xue C, Rengasamy A, Le Cras TD, Koberna PA, Dailey GC, Johns RA (1994) Distribution of NOS in normoxic vs. hypoxic rat lung: upregulation of NOS by chronic hypoxia. Am J Physiol 267: L667–78

    PubMed  CAS  Google Scholar 

  82. Shaul PW, North AJ, Brannon TS, Ujiie K, Wells LB, Nisen PA, Lowenstein CJ, Snyder SH, Star RA (1995) Prolonged in vivo hypoxia enhances nitric oxide synthase type I and type III gene expression in adult rat lung. Am J Respir Cell Mol Biol 13: 167–174

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Liu, S.F., Evans, T.W. (2000). Role of Nitric Oxide in the Regulation of Pulmonary Vascular Tone. In: Belvisi, M.G., Mitchell, J.A. (eds) Nitric Oxide in Pulmonary Processes. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8474-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8474-7_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9582-8

  • Online ISBN: 978-3-0348-8474-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics