Skip to main content

Inhibiting cytokine-processing enzymes

  • Chapter
Novel Cytokine Inhibitors

Part of the book series: Progress in Inflammation Research ((PIR))

  • 100 Accesses

Abstract

Cytokines and local growth factors are important soluble mediators that play a fundamental role in regulating the growth and differentiated function of many cell types. They mediate their effects by binding to membrane-bound receptors which initiates a complex sequence of signaling events that leads to a cellular response. The magnitude of this effect reflects the complex balance that exists between the different components of the cytokine system. These include the cytokine itself, the membrane-bound receptor, and the presence or absence of soluble receptor and/or receptor antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Massague J (1990) Transforming growth factor-a. A model for membrane-anchored growth factors.J Biol Chem265: 21393–21396

    PubMed  CAS  Google Scholar 

  2. Rose-John S, Heinrich PC (1994) Soluble receptors for cytokines and growth factors: generation and biological function.Biochem J300: 281–291

    PubMed  CAS  Google Scholar 

  3. Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, March CJ, Kronheim SR, Druck T, Cannizzaro LA et al (1992) Molecular cloning of the interleukin 113 converting enzyme.Science256: 97–100

    Article  PubMed  CAS  Google Scholar 

  4. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weider JR, Aunins J et al (1992) A novel heterodimeric cyteine protease is required for interleukin-113 processing in monocytes.Nature356: 768–774

    Article  PubMed  CAS  Google Scholar 

  5. Gu K, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming MA, Hayashi N, Higashino K, Oka-mura H, Nakanishi K et al (1997) Activation of interferon-y-inducing factor mediated by interleukin-113 converting enzyme.Science275: 206–209

    Article  PubMed  CAS  Google Scholar 

  6. Mohler KM, Sleath PR, Fitzner JN, Cerretti DP, Alderson M, Kerwar SS, Torrance DS, Otten-Evans C, Greenstreet T, Weerawarna K et al (1994) Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing.Nature370: 218–220

    Article  PubMed  CAS  Google Scholar 

  7. Gearing AJH, Beckett P, Christodoulou M, Churchhill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL et al (1994) Processing of tumour necrosis factor-a precursor by metalloproteinases.Nature370: 555–557

    Article  PubMed  CAS  Google Scholar 

  8. McGeehan GM, Becherer JD, Champion B, Connolly KM, Conway JG, Furdon P, Karp S, Kidao S, McElroy AB, Nichols J, Pryzwansky KM et al (1994) Regulation of tumour necrosis factor-a processing by a metalloproteinase inhibitor.Nature370: 558–561

    Article  PubMed  CAS  Google Scholar 

  9. Pandiella A, Bosenberg MW, Huang EJ, Besmer P, Massague J (1992) Cleavage of membrane-anchored growth factors involves distinct protease activities regulated through common mechanisms.J Biol Chem267: 24028–24033

    PubMed  CAS  Google Scholar 

  10. Gallea-Robache S, Morand V, Millet S, Bruneau J-M, Bhatnagar N, Chouaib S, Roman-Roman S (1997) A metalloproteinase inhibitor blocks the shedding of soluble cytokine receptors and processing of transmembrane cytokine precursors in human monocytic cells.Cytokine9: 340–346

    Article  PubMed  CAS  Google Scholar 

  11. Mullberg J, Rauch CT, Wolfson MF, Castner B, Fitzner JN, Otten-Evans C, Mohler KM, Cosman D, Black RA (1997) Further evidence for a common mechanism for shedding of cell surface proteins.FEBS Lett401: 235–238

    Article  PubMed  CAS  Google Scholar 

  12. Lyman SD, James L, Escobar S, Downey H, de Vries P, Brasel K, Stocking K, Beckmann MP, Copeland NG, Cleveland LS et al (1995) Identification of soluble and membrane-bound isoforms of the murine flt3 ligand generated by alternative splicing of mRNAs.Oncogene10: 149–157

    PubMed  CAS  Google Scholar 

  13. Lyman SD, James L, Vanden Bos T, de Vries P, Brasel K, Gliniak B, Hollingsworth LT, Picha KS, McKenna HJ, Splett RR et al (1993) Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primative hematopoietic cells.Cell75: 1157–1167

    Article  PubMed  CAS  Google Scholar 

  14. Loughnan MS, Sanderson CJ, Nossal GJV (1988) Soluble interleukin 2 receptors are released from the cell surface of normal murine B lymphocytes stimulated with interleukin 5.Proc Natl Acad Sci USA85: 3115–3119

    Article  PubMed  CAS  Google Scholar 

  15. Mosley B, Beckmann MP, March CJ, Idzerda RL, Gimpel SD, VandenBos T, Friend D, Alpert A, Anderson D, Jackson J et al (1989) The murine interleukin-4 receptor: molecular cloning and characterization of secreted and membrane bound forms.Cell59: 335–348

    Article  PubMed  CAS  Google Scholar 

  16. Tavernier J, Devos R, Cornelis S, Tuypens T, Van der Heyden J, Fiers W, Plaetinck G (1991) A human high affinity interleukin-5 receptor (ILSR) is composed of an IL5specific a chain and a (3 chain shared with the receptor for GM-CSF.Cell66: 1175–1184

    Article  PubMed  CAS  Google Scholar 

  17. Tavernier J, Tuypens T, Plaetinck G, Verhee A, Fiers W, Devos R (1992) Molecular basis of the membrane-anchored and two soluble isoforms of the human interleukin 5 receptor a subunit.Proc Natl Acad Sci USA89: 7041–7045

    Article  PubMed  CAS  Google Scholar 

  18. Lust JA, Donovan KA, Kline MP, Greipp PR, Kyle RA, Maihle NJ (1992) Isolation of an mRNA encoding a soluble form of the human interleukin-6 receptor.Cytokine4: 96–100

    Article  PubMed  CAS  Google Scholar 

  19. Mullberg J, Durie FH, Otten-Evans C, Alderson MR, Rose-John S, Cosman D, Black RA, Mohler KM (1995) A metalloproteinase inhibitor blocks shedding of the IL-6 receptor and the p60 TNF receptor.J Immunol155: 5198–5205

    PubMed  CAS  Google Scholar 

  20. Hargreaves PG, Wang F, Antcliff J, Murphy G, Lawry J, Russell RGG, Croucher PI (1998) Human myeloma cells shed the interleukin-6 receptor: Inhibition by tissue inhibitor of metalloproteinase-3 and a hydroxamate-based metalloproteinase inhibitor.Br J Haematol101: 694–707

    Article  PubMed  CAS  Google Scholar 

  21. Goodwin RG, Friend D, Ziegler SF, Jerzy R, Falk BA, Gimpel S, Cosman D, Dower SK, March CJ, Namen AE et al (1990) Cloning of the human and murine interleukin-7 receptors: demonstration of a soluble form and homology to a new receptor superfamily.Cell60: 941–951

    Article  PubMed  CAS  Google Scholar 

  22. Renauld J-C, Druez C, Kermouni A, Houssiau F, Uyttenhove C, Van Roost E, Van Snick J (1992) Expression cloning of the murine and human interleukin 9 receptor cDNAs.Proc Natl Acad Sci USA89: 5690–5694

    Article  PubMed  CAS  Google Scholar 

  23. Crowe PD, Walter BN, Mohler KM, Otten-Evans C, Black RA, Ware CF (1995) A metalloproteinase inhibitor blocks shedding of the 80-kD TNF receptor and TNF processing in T lymphocytes.J Exp Med181: 1205–1210

    Article  PubMed  CAS  Google Scholar 

  24. Downing JR, Roussel MF, Sherr CJ (1989) Ligand and protein kinase C downmodulate the colony stimulating factor 1 receptor by independent mechanisms.Mol Cell Biol9: 2890–2896

    PubMed  CAS  Google Scholar 

  25. Fukunaga R, Seto Y, Mizushima S, Nagata S (1990) Three different mRNAs encoding human granulocyte colony-stimulating factor receptor.Proc Natl Acad Sci USA87: 8702–8706

    Article  PubMed  CAS  Google Scholar 

  26. Raines MA, Liu L, Quan SG, Joe V, DiPersio JF, Golde DW (1991) Identification and molecular cloning of a soluble human granulocyte-macrophage colony-stimulating factor receptor.Proc Natl Acad Sci USA88: 8203–8207

    Article  PubMed  CAS  Google Scholar 

  27. Tiesman J, Hart CE (1993) Identification of a soluble receptor for platelet-derived growth factor in cell-conditioned medium and human plasma.J Biol Chem268: 9621–9628

    PubMed  CAS  Google Scholar 

  28. Gearing DP, Thut CJ, VandenBos T, Gimpel SD, Delaney PB, King J, Price V, Cosman D, Beckmann MP (1991) Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130.EMBO J10: 2839–2848

    PubMed  CAS  Google Scholar 

  29. Layton MJ, Cross BA, Metcalf D, Ward LD, Simpson RJ, Nicola NA (1992) A major binding protein for leukemia inhibitory factor in normal mouse serum: Identification as a soluble form of the cellular receptor.Proc Natl Acad Sci USA89: 8618–8620

    Article  Google Scholar 

  30. Arribas J, Goodly L, Vollmer P, Kishimoto TK, Rose-John S, Massague J (1996) Diverse cell surface protein ectodomains are shed by a system sensitive to metalloproteinase inhibitors.J Biol Chem271: 11376–11382

    Article  PubMed  CAS  Google Scholar 

  31. Dinarello CA, Wolff SM (1993) The role of interleukin-1 in disease.N Engl J Med328: 106–113

    Article  PubMed  CAS  Google Scholar 

  32. Dinarello CA (1991) Interleukin-1 and interleukin-1 antagonism.Blood77: 1627–1652

    PubMed  CAS  Google Scholar 

  33. Kobayashi Y, Yamamoto K, Saido T, Kawasaki H, Oppenheim JJ, Matsushima K (1990 Identification of calcium-activated neutral protease as a processing enzyme of human interleukin 1a.Proc Natl Acad Sci USA87: 5548–5552

    Article  PubMed  CAS  Google Scholar 

  34. Okamura H, Tsutsui H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nakuda Y, Hattori K et al (1995) Cloning of a new cytokine that induces INFr production by T cells.Nature378: 88–92

    Article  PubMed  CAS  Google Scholar 

  35. Black RA, Kronheim SR, Cantrell M, Deeley MC, March CJ, Prickett KS, Wignall J, Conlon PJ, Cosman D, Hopp TP et al (1988) Generation of biologically active interleukin 113 by proteolytic cleavage of the inactive precursor.J Biol Chem263: 9437–9442

    PubMed  CAS  Google Scholar 

  36. Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW (1997) Substrate specificity of caspase family proteases.J Biol Chem272: 9677–9682

    Article  PubMed  CAS  Google Scholar 

  37. Villa P, Kaufman SH, Earnshaw WC (1997) Caspases and caspase inhibitors. Trends Biochem Sci 22: 388–393

    Article  PubMed  CAS  Google Scholar 

  38. Walker NP, Talanian RV, Brady KD, Dang LC, Bump NJ, Ferenz CR, Franklin S, Ghayur T, Hackett MC, Hammill LD et al (1994) Crystal structure of the cysteine protease interleukin-113 converting enzyme: a (p20/p100)2 homodimer.Cell78: 343–352

    Article  PubMed  CAS  Google Scholar 

  39. Dinarello CA, Margolis NH (1995) Stopping the cuts.Curr Biol5: 587–590

    Article  PubMed  CAS  Google Scholar 

  40. Salvesen GS, Dixit VM (1997) Caspases:intracellular signalling by proteolysis.Cell91: 443–446

    Article  PubMed  CAS  Google Scholar 

  41. Nicholson DW, Thornberry NA (1997) Caspases: killer proteases.Trends Biochem Sci22: 299–306

    Article  PubMed  CAS  Google Scholar 

  42. Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, Pickup DJ (1992) Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-113 converting enzyme.Cell69: 597–604

    Article  PubMed  CAS  Google Scholar 

  43. Bump NJ, Hackett M, Hugunin M, Seshagiri S, Brady K, Chen P, Ferenz C, Franklin S, Ghayur T, Li P et al (1995) Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35.Science269: 1885–1888

    Article  PubMed  CAS  Google Scholar 

  44. Livingston DJ (1997)In vitroandin vivostudies of ICE inhibitors.J Cell Biochem64: 19–26

    Article  PubMed  CAS  Google Scholar 

  45. Miller DK, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Molineaux SM, Thornberry NA (1993) The IL-113 converting enzyme as a therapeutic target. Ann N Y Acad Sci 696: 133–148

    Article  PubMed  CAS  Google Scholar 

  46. Fletcher DS, Agarwal L, Chapman KT, Chin J, Egger LA, Limjuko G, Luell S, MacIntyre DE, Peterson EP, Thornberry NA et al (1995) A synthetic inhibitor of interleukin113 converting enzyme prevents endotoxin-induced interleukin-113 productionin vitroandin vivo. J Interferon Cytokine Res15: 243–248

    Article  PubMed  CAS  Google Scholar 

  47. Miller BE, Krasney PA, Gauvin DM, Holbrook KB, Koonz DJ, Abruzzese RV, Miller RE, Pagni KA, Dolle RE, Ator MA et al (1995) Inhibition of mature IL-113 production in murine macrophages and a murine model of inflammation by WIN 67694, an inhibitor of IL-113 converting enzyme.J Immunol154: 1331–1338

    PubMed  CAS  Google Scholar 

  48. Ku G, Faust T, Lauffer LL, Livingston DJ, Harding MW (1996) Interleukin-13 converting enzyme inhibition blocks progression of type II collagen-induced arthritis in mice.Cytokine8: 377–386

    Article  PubMed  CAS  Google Scholar 

  49. Li P, Allen H, Banjerjee S, Seshadri T (1997) Characterization of mice deficient in interleukin-13 converting enzyme.J Cell Biochem64: 27–32

    Article  PubMed  CAS  Google Scholar 

  50. Beutler B, Cerami A (1989) The biology of cachetin/TNF: a primary mediator of the host response.Annu Rev Immunol7: 625–655

    Article  PubMed  CAS  Google Scholar 

  51. Aggarawal BB, Kohr WJ, Hass PE, Moffat B, Spencer SA, Henzel W, Bringman TS, Ned-win GE, Goeddel DV, Harkins RN (1985) Human tumor necrosis factor: production, purification and characterization.J Biol Chem260: 2345–2354

    Google Scholar 

  52. Wang AM, Creasey AA, Ladner MB, Lin LS, Strickler J, Van Arsdell JN, Yamamoto R, Mark DF (1985) Molecular cloning of the complementary DNA for human tumor necosis factor.Science228: 149–154

    Article  PubMed  CAS  Google Scholar 

  53. Kriegler M, Perez C, De Fray K, Albert I, Lu SD (1988) A novel form of TNF/cachetin is a surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF.Cell53: 45–53

    Article  PubMed  CAS  Google Scholar 

  54. Williams LM, Gibbons DL, Gearing A, Maini RN, Feldmann M, Brennan FM (1996) Paradoxical effects of a synthetic metalloproteinase inhibitor that blocks both p55 and p75 TNF receptor shedding and TNFα processing in RA synovial membrane cell culture.J Clin Invest97: 2833–2841

    Article  PubMed  CAS  Google Scholar 

  55. Black RA, Durie FH, Otten-Evans C, Miller R, Slack JL, Lynch DH, Castner B, Mohler KM, Gerhart M, Johnson RS et al (1996) Relaxed specificity of matrix metalloproteinases (MMPS) and TIMP insensitivity of tumour necrosis factor-a (TNF-a) production suggest the major TNF-a converting enzyme is not an MMP.Biochem Biophys Res Commun225: 400–405

    Article  PubMed  CAS  Google Scholar 

  56. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S et al (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-a from cells.Nature385: 729–733

    Article  PubMed  CAS  Google Scholar 

  57. Moss ML, Jin S-LC, Milla ME, Burkhart W, Carter HL, Chen W-J, Clay WC, Didsbury JR, Hassler D, Hoffman CR et al (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-a.Nature385: 733–736

    Article  PubMed  CAS  Google Scholar 

  58. Wolfsberg TG, Primakoff P, Myles DG, White JM (1995) ADAM, a novel family of membrane proteins containing a disintegrin and metalloproteinase domain: Multipotential functions in cell-cell and cell-matrix interactions.J Cell Biol131: 275–278

    Article  PubMed  CAS  Google Scholar 

  59. Maskos K, Fernandez-Catalan C, Huber R, Bourenkov GP, Bartunik H, Ellestad GA, Reddy P, Wolfson MF, Rauch CT, Castner BJ et al (1998) Crystal structure of the catalytic domain of human tumour necrosis factor-a-converting enzyme.Proc Natl Acad Sci USA95: 3408–3412

    Article  PubMed  CAS  Google Scholar 

  60. Howard L, Lu X, Mitchell S, Griffiths S, Glynn P (1996) Molecular cloning of MADM: a catalytically active mammalian disintegrin-metalloproteinase expressed in various cell types.Biochem J317: 45–50

    PubMed  CAS  Google Scholar 

  61. Lunn CA, Fan X, Dalie B, Miller K, Zavodny PJ, Narula SK, Lundell D (1997) Purification of ADAM 10 from bovine spleen as a TNFα convertase. FEBS Lett 400: 333–335

    Article  PubMed  CAS  Google Scholar 

  62. Rosendahl MS, Ko SC, Long DL, Brewer MT, Rosenzweig B, Hedl E, Anderson L, Pyle SM, Moreland J, Meyers MA et al (1997) Identification and characterization of a pro-tumor necrosis factor-a-processing enzyme from the ADAM family of zinc metalloproteinases.J Biol Chem272: 24588–24593

    Article  PubMed  CAS  Google Scholar 

  63. Hooper HM, Karran EH, Turner AJ (1997) Membrane protein secretases.Biochem J321: 265–279

    PubMed  CAS  Google Scholar 

  64. Engelmann H, Aderka D, Rubenstein M, Rotman D, Wallach D (1989) A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity.J Biol Chem264: 11974–11980

    PubMed  CAS  Google Scholar 

  65. Nophar Y, Kemper O, Brakebusch C, Englemann H, Zwang R, Aderka D, Holtmann H, Wallach D (1990) Soluble forms of tumour necrosis factor receptors (TNF-Rs). The cDNA for the typel TNF-R, cloned using amino acid sequence data of its soluble form, encodes both cell surface and a soluble form of the receptor.EMBO J9: 3269–3278

    PubMed  CAS  Google Scholar 

  66. Heller RA, Song K, Onasch MA, Fischer WH, Chang D, Ringold GM (1990) Complementary DNA cloning of a receptor for tumor necrosis factor and demonstration of a shed form of the receptor.Proc Natl Acad Sci USA87: 6151–6155

    Article  PubMed  CAS  Google Scholar 

  67. Hwang C, Gatanaga M, Granger GA, Gatanaga T (1993) Mechanism of release of soluble forms of tumor necrosis factor/lymphotoxin receptors by phorbol myristate acetate-stimulated human THP-1 cellsin vitro. J Immunol151: 5631–5638

    CAS  Google Scholar 

  68. Porteu F, Brockhaus M, Wallach D, Engelmann H, Nathan CF (1991) Human neutrophil elastase releases a ligand-binding fragment from the 75-kDa tumor necrosis factor (TNF) receptor.J Biol Chem266: 18846–18853

    PubMed  CAS  Google Scholar 

  69. Hermann C, Chernajovsky Y (1998) Mutation of proline 211 reduces shedding of the human p75 TNF receptor.J Immunol160: 2478–2487

    Google Scholar 

  70. Smith MR, Kung H-f, Durum SK, Colburn NH, Sun Y (1997) TIMP-3 induces cell death by stabilizing TNF-a receptors on the surface of human colon carcinoma cells.Cytokine9: 770–780

    Article  PubMed  CAS  Google Scholar 

  71. Novick D, Engelmann H, Wallach D, Rubinstein M (1989) Soluble cytokine receptors are present in normal human urine.J Exp Med170: 1409–1414

    Article  PubMed  CAS  Google Scholar 

  72. Mullberg J, Schooltink H, Stoyan T, Heinrich PC, Rose-John S (1992) Protein kinase C acitivity is rate limiting for shedding of the interleukin-6 receptor.Biochem Biophys Res Commun189: 794–800

    Article  PubMed  CAS  Google Scholar 

  73. Mullberg J, Schooltink H, Stoyan T, Gunther M, Graeve L, Buse G, Mackiewicz A, Heinrich PC, Rose-John S (1993) The soluble interleukin-6 receptor is generated by shedding.Eur J Immunol23: 473–480

    Article  PubMed  CAS  Google Scholar 

  74. Mullberg J, Oberthur W, Lottspeich F, Mehl E, Dittrich E, Graeve L, Heinrich PC, Rose-John S (1994) The soluble human IL-6 receptor. Mutational characterization of the proteolytic cleavage site.J Immunol152: 4958–4968

    PubMed  CAS  Google Scholar 

  75. Narazaki M, Yasukawa K, Saito T, Ohsugi Y, Fukui H, Koishihara Y, Yancopoulos G, Taga T, Kishimoto T (1993) Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130.Blood82: 1120–1126

    PubMed  CAS  Google Scholar 

  76. Diamant M, Rieneck K, Mechti N, Zhang X-G, Svenson M, Bendtzen K, Klein B, (1997) Cloning and expression of an alternative spliced mRNA encoding a soluble form of the human interleukin-6 signal transducer gp130.FEBS Lett412: 379–384

    Article  PubMed  CAS  Google Scholar 

  77. Mullberg J, Dittrich E, Graeve L, Gerhartz C, Yasukawa K, Taga T, Kishimoto T, Heinrich PC, Rose-John S (1993) Differential shedding of the two subunits of the interleukin6 receptor.FEBS Lett332: 174–178

    Article  PubMed  CAS  Google Scholar 

  78. Stein J, Rettenmier C (1991) Proteolytic processing of a plasma membrane-bound precursor to human macrophage-colony stimulating factor (CSF-1) is accelerated by phorbol ester.Oncogene6: 601–605

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Croucher, P.I., Holen, I., Hargreaves, P.G. (2000). Inhibiting cytokine-processing enzymes. In: Higgs, G.A., Henderson, B. (eds) Novel Cytokine Inhibitors. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8450-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8450-1_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9572-9

  • Online ISBN: 978-3-0348-8450-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics