Skip to main content

Regulation of cytokine production by inhibitors of cell signalling

  • Chapter
Novel Cytokine Inhibitors

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Cytokines are soluble messengers that play a pivotal role in regulating immune responses. They operate within a network where their effects are pleiotropic and their function is often redundant. Cytokines typically affect adjacent cells or even the cell of origin and act as paracrine, juxtacrine, autocrine or intracrine mediators. As with any biological system this regulation is in a delicate balance. An organism responds to disturbances in its physiological homeostasis by mounting an acute phase response, which is characterised by dramatic changes in the concentration of some plasma proteins termed acute phase proteins. IL-6 has been identified in vitro and in vivo as the major hepatocyte stimulating factor. Other pro-inflammatory cytokines, such as IL-1, IL-12 and TNFα, are produced to orchestrate a cellular response to trauma or invasion of the body by pathogenic organisms. The cytokines mediate a wide range of symptoms associated with trauma and infection such as fever, anorexia, tissue wasting, and immunomodulation. Inappropriate or over-production of these same cytokines is associated with mortality and pathology in a wide range of diseases, such as malaria, sepsis, rheumatoid arthritis, inflammatory bowel disease, cancer and AIDS. As well as pro-inflammatory cytokines, there are anti-inflammatory cytokines, including IL-1ra, IL-4, IL-10, IL-11, IL-13 and TGFβ, whose function is to ameliorate the potentially harmful effects of pro-inflammatory mediators, thus restricting the magnitude and duration of the inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiss A, Kadlecek T, Iwashima M, Chan A, van Oers N (1995) Molecular and genetic insights into T-cell antigen receptor signalling.Annals New York Acad Sci766: 149–156

    Article  CAS  Google Scholar 

  2. Wange RL, Samelson LE (1996) Complex complexes: signalling at the TCR.Immunity5: 197–205

    Article  PubMed  CAS  Google Scholar 

  3. Ashwell JD, Klausner RD (1990) Genetic and mutational analysis of the T-cell antigen receptor.Ann Rev Immunol8: 139–167

    Article  CAS  Google Scholar 

  4. Reth M (1989) Antigen receptor tail clue [letter].Nature338: 383–384

    Article  PubMed  CAS  Google Scholar 

  5. Weiss A, Littman DR (1994) Signal transduction by lymphocyte antigen receptors.Cell76: 263–274

    Article  PubMed  CAS  Google Scholar 

  6. Cambier JC (1995) Antigen and Fc receptor signalling: the awesome power of the immunoreceptor tyrosine-based activation motif (ITAM).J Immunol155: 3281–3285

    PubMed  CAS  Google Scholar 

  7. Irving BA, Chan AC, Weiss A (1993) Functional characterization of a signal transducing motif present in the T cell antigen receptorÇchain.J Exp Med177: 1093–1103

    Article  PubMed  CAS  Google Scholar 

  8. Exley M, Varticovsky L, Peter M, Sancho J, Terhorst C (1994) Association of phosphatidylinositol-3-kinase with a specific sequence of the T cell receptor zeta chain is dependent on T cell activation.J Biol Chem269: 15140–15146

    CAS  Google Scholar 

  9. Cambier JC, Johnson SA (1995) Differential binding activity of ARH1/TAM motifs.Immunol Lett44: 77–80

    Article  PubMed  CAS  Google Scholar 

  10. Isakov N, Wange RL, Burgess WH, Watts JD, Aebersold R, Samelson LE. ZAP-70 binding specificity to T cell based tyrosine-based activation motifs: the tandem SH2 domains of ZAP-70 bind distinct tyrosine-based activation motifs with varying affinity.J Exp Med181: 375–380

    Google Scholar 

  11. Osman N, Turner H, Lucas S, Reif K, Cantrell DA (1996) The protein interactions of the immunoglobulin receptor family tyrosine-based activation motifs present in the T cell receptorÇsubunits and the CD3 7,6 and e chains.Eur J Immunol26: 1063–1068

    Article  PubMed  CAS  Google Scholar 

  12. Howe LR, Weiss A (1995) Multiple kinases mediate T-cell-receptor signaling.Trends Biochem Sci20: 59–64

    Article  PubMed  CAS  Google Scholar 

  13. Van Oers NSC, Lowin-Kropf B, Finlay D, Connolly K, Weiss A (1996) aß T cell development is abolished in mice lacking both Lck and Fyn protein tyrosine kinases.Immunity5: 429–436

    Article  PubMed  Google Scholar 

  14. Straus DB, Weiss A (1992) Genetic evidence for the involvement of lck tyrosine kinase in signal transduction through the T cell antigen receptor.Cell70: 585–593

    Article  PubMed  CAS  Google Scholar 

  15. Molina TJ, Kishihara K, Siderovski DP, van Ewijk W, Narendran A, Timms E, Wake-ham A, Paige CJ, Hartmann K-U, Veillette A, Davidson D, Mak TW (1992) Profound block in thymocyte development in mice lacking p56“.Nature357: 161–164

    Article  PubMed  CAS  Google Scholar 

  16. Nakamura K, Koga Y, Yoshida H, Tanaka K, Sasaki M, Kimura G, Nomoto K (1994) Inhibition of the T cell receptor-mediated signal transduction by microinjection of antiLck monoclonal antibody into T-cells.Biochim Biophys Acta1224: 495–505

    Article  PubMed  Google Scholar 

  17. Samelson LE, Phillips AF, Luong ET, Klausner RD (1990) Association of the Fyn protein-tyrosine kinase with the T-cell antigen receptor.Proc Natl Acad Sci USA87: 4358–4362

    Article  PubMed  CAS  Google Scholar 

  18. Timson Gauen LK, Kong AN, Samelson LE, Shaw AS (1992) p59fyn tyrosine kinase associates with multiple T-cell receptor subunits through its unique amino-terminal domain.Mol Cell Biol12: 5438–5446

    PubMed  CAS  Google Scholar 

  19. Tsygankov AY, Broker BM, Fargnoli J, Ledbetter JA, Bolen JB (1992) Activation of tyrosine kinase p60fyn following T cell antigen receptor cross-linking.J Biol Chem267: 18259–18262

    PubMed  CAS  Google Scholar 

  20. Davidson D, Chow LML, Fournel M, Veillette A (1992) Differential regulation of T cell antigen responsiveness by isoforms of the src-related tyrosine protein kinase p59fyn.J Exp Med175: 1483–1492

    Article  PubMed  CAS  Google Scholar 

  21. Cooke MP, Abraham KM, Forbush KA, Perlmutter RM (1991) Regulation of T cell receptor signaling by a src family protein-tyrosine kinase (p59fyn).Cell65: 281–291

    Article  PubMed  CAS  Google Scholar 

  22. Arpaia E, Shahar M, Dadi H, Cohen A, Roifman CM (1994) Defective T cell receptor signaling and CD8+ thymic selection in humans lacking ZAP-70 kinase.Cell76: 947–958

    Article  PubMed  CAS  Google Scholar 

  23. Chan AC, Kadlecek TA, Elder ME, Filipovich AH, Kuo WL, Iwashima M, Parslow TG, Weiss A (1994) ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency.Science264: 1599–1601

    Article  PubMed  CAS  Google Scholar 

  24. Elder ME, Clever J, Chan AC, Hope TJ, Weiss A, Parslow T (1994) Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase.Science264: 1596–1599

    Article  PubMed  CAS  Google Scholar 

  25. Gelfand E, Mazer B, Kadelecek T, Weinberg K, Weiss A (1995) Absence of ZAP-70 prevents signaling through the antigen receptor on peripheral blood T cells but not thymocytes.J Exp Med182: 1057–1066

    Article  PubMed  CAS  Google Scholar 

  26. Negishi I, Motoyama N, Nakayama K, Nakayama K, Senju S, Hatakyama S, Zhang Q, Chan AC, Loh DY (1995) Essential role for ZAP-70 in both positive and negative selection of thymocytes.Nature376: 435–438

    Article  PubMed  CAS  Google Scholar 

  27. Chan AC, Iwashima M, Turck CW, Weiss A (1992) ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain.Cell71: 649–662

    Article  PubMed  CAS  Google Scholar 

  28. Iwashima M, Irving BA, van Oers NSC, Chan AC, Weiss A (1994) Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases.Science263: 1136–1139

    Article  PubMed  CAS  Google Scholar 

  29. Latour S, Fournel M, Veillette A (1997) Regulation of T-cell antigen receptor signalling by Syk tyrosine protein kinase.Mol Cell Biol17: 4434–4441

    CAS  Google Scholar 

  30. Williams BL, Schreiber KL, Zhang W, Wange RL, Samelson LE, Leibson PJ, Abraham RT (1998) Genetic evidence for differential coupling of Syk family kinases to the T-cell receptor: reconstitution studies in a ZAP-70-deficient Jurkat T-cell line.Mol Cell Biol18: 1388–1399

    CAS  Google Scholar 

  31. Chu DH, Morita CT, Weiss A (1998) The Syk family of protein tyrosine kinases in T-cell activation and development.Immunol Rev165: 167–180

    Article  PubMed  CAS  Google Scholar 

  32. Desiderio S, Siliciano JD (1994) The Itk/Btk/Tec family of protein-tyrosine kinases.Chem Immunol59: 191–208

    Article  PubMed  CAS  Google Scholar 

  33. Gibson S, Truitt K, Lapushin R, Khan H, Imboden JB, Mills GB (1998) Efficient CD28 signalling leads to increases in the kinase activities of the TEC family tyrosine kinase EMT/ITK/TSK and the SRC family tyrosine kinase LCK Biochem J 15: 1123–1128

    Google Scholar 

  34. Lu Y, Cuevas B, Gibson S, Khan H, LaPushin R, Imboden J, Mills GB (1998) Phospatidylinositol 3-kinase is required for CD28 but not CD3 regulation of the TEC family tyrosine kinase EMT/ITK/TSK: functional and physical interaction of EMT with phosphatidylinositol 3-kinase. JImmunol161: 5404–5412

    PubMed  CAS  Google Scholar 

  35. Liao XC, Littman DR, Weiss A (1997) Itk and Fyn make independent contributions to T cell activation.J Exp Med186: 2069–2073

    Article  PubMed  CAS  Google Scholar 

  36. Lui KQ, Bunnell SC, Gurniak CB, Berg LJ (1998) T cell receptor-initiated calcium release is uncoupled from capacitative calcium entry in Itk-deficient T cells.J Exp Med187: 1721–1727

    Article  Google Scholar 

  37. Liao XC, Littman DR (1995) Altered T cell receptor signalling and disrupted T cell development in mice lacking Itk.Immunity3: 757–769

    Article  PubMed  CAS  Google Scholar 

  38. Yang WC, Ghiotto M, Barbarat B, Olive D (1999) The role of Tec protein-tyrosine kinase in T cell signalling.J Biol Chem274: 607–617

    Article  PubMed  CAS  Google Scholar 

  39. Weiss A, Kadlecek T, Iwashima M, Chan A, van Oers N (1995) Molecular and genetic insights into T-cell antigen receptor signaling.Annals NY Acad Sci766: 149–156

    Article  CAS  Google Scholar 

  40. Samelson LE, Donovan JA, Isakov N, Ota Y, Wange RL (1995) Signal transduction mediated by the T-cell antigen receptor.Annals NY Acad Sci766: 157–172

    Article  CAS  Google Scholar 

  41. Peterson EJ, Koretzky GA (1999) Signal transduction in T lymphocytes.Clin Exp Rheumatol17: 107–114

    PubMed  CAS  Google Scholar 

  42. Qian D, Weiss A (1997) T cell antigen receptor signal transduction.Curr Opin in Cell Biol9: 205–212

    Article  CAS  Google Scholar 

  43. Alberola-Ila J, Takaki S, Kerner JD, Perlmutter RM (1997) Differential signaling by lymphocyte antigen receptors.Ann Rev Immunol15: 125–154

    Article  CAS  Google Scholar 

  44. Peri KG, Veillette A (1994) Tyrosine protein kinases in T lymphocytes.Chem Immunol59: 19–39

    Article  PubMed  CAS  Google Scholar 

  45. Jayaraman T, Ondrias K, Ondriasova E, Marks AR (1996) Regulation of the inositol 1, 4, 5-triphosphate receptor by tyrosine phosphorylation.Science272: 1492–1494

    Article  PubMed  CAS  Google Scholar 

  46. Wardenburg JB, Fu C, Jackman JK, Flotow H, Wilkinson SE, Williams DH, Johnson R, Kong G, Chan AC, Findell PR (1996) Phosphorylation of SLP-76 by the ZAP-70 protein tyrosine kinase is required for T cell receptor function.J Biol Chem271: 19641–19644

    Article  CAS  Google Scholar 

  47. Wu J, Motto DG, Koretzky GA, Weiss A (1996) Vav and SLP-76 interact and functionally cooperate in IL-2 gene activation.Immunity4: 593–602

    Article  PubMed  CAS  Google Scholar 

  48. Onodera H, Motto DG, Koretzky GA, Rothstein DM (1996) Differential regulation of activation-induced tyrosine phosphorylation and recruitment of SLP-76 to Vav by distinct isoforms of the CD45 protein-tyrosine phosphatase.J Biol Chem271: 22225–22230

    Article  PubMed  CAS  Google Scholar 

  49. Tuosto L, Michel F, Acuto O (1996) p95vav associates with tyrosine phosphorylated SLP-76 in antigen-stimulated T cells.J Exp Med184: 1161–1166

    Article  PubMed  CAS  Google Scholar 

  50. Wu J, Katzav S, Weiss A (1995) A functional T cell receptor signaling pathway is required for p95vav activity.Mol Cell Biol15: 4337–4346

    PubMed  CAS  Google Scholar 

  51. Donovan JA, Wange RL, Langdon WY, Samelson LE (1994) The protein product of the c-Cbl protooncogene is the 120kDa tyrosine-phosphorylated protein in Jurkat cells activatedviathe T cell antigen receptor.J Biol Chem271: 19641–19644

    Google Scholar 

  52. Motto DG, Ross SE, Wu J, Hendricks-Taylor LR, Koretzky GA (1996) Implication of the GRB2-associated phosphoprotein SLP-76 in T cell receptor-mediated interleukin 2 production.J Exp Med183: 1937–1943

    Article  PubMed  CAS  Google Scholar 

  53. Cantrell D (1996) T cell antigen receptor signal transduction pathways.Ann Rev Immunol14: 259–274

    Article  CAS  Google Scholar 

  54. Fukazawa T, Reedquist KA, Trub T, Soltoff S, Panchamoorthy G, Druker B, Candy L, Shoelson SE, Band H (1995) The SH3 domain-binding T cell tyrosyl phosphoprotein p120.J Biol Chem270: 19141–19150

    Article  PubMed  CAS  Google Scholar 

  55. Meisner H, Conway BR, Hartley D, Czech MP (1995) Interaction of Cbl with Grb2 and phosphatidylinositol-3’-kinase in activated Jurkat cells.Mol Cell Biol15: 3571–3578

    CAS  Google Scholar 

  56. Jackman JK, Motto DG, Sun Q, Tanemoto M, Turck CW, Peltz GA, Koretzky GA, Find-ell PR (1995) Molecular cloning of SLP-76, a 76-kDa tyrosine phosphoprotein associated with Grb2 in T cells.J Biol Chem270: 7029–7032

    Article  PubMed  CAS  Google Scholar 

  57. Downward J (1994) The GRB2/Sem-5 adaptor protein.FEBS Lett338: 113–117

    Article  PubMed  CAS  Google Scholar 

  58. Holsinger LJ, Spencer DM, Austin DJ, Schreiber SL, Crabtree GR (1995) Signal transduction in T lymphocytes using a conditional allele of Sos.Proc Natl Acad Sci USA92: 9810–9814

    Article  PubMed  CAS  Google Scholar 

  59. Fields PE, Gajewski TF, Fitch FW (1996) Blocked Ras activation in anergic CD4’ T cells.Science271: 1276–1278

    Article  PubMed  CAS  Google Scholar 

  60. Li W, Whaley CD, Mondino A, Mueller DL (1996) Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4’ T cells.Science271: 1272–1276

    Article  PubMed  CAS  Google Scholar 

  61. Denny MF, Kaufman HC, Chan AC, Straus DB (1999) The Lck SH3 domain is required for activation of the mitogen-activated protein kinase pathway but not the initiation of T-cell antigen receptor signaling.J Biol Chem274: 5146–5152

    Article  PubMed  CAS  Google Scholar 

  62. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of LPS and LPS binding protein.Science249: 1431–1433

    Article  PubMed  CAS  Google Scholar 

  63. Leturcq DJ, Moriarty AM, Talbott G, Winn RK, Martin TR, Ulevitch RJ (1996) Antibodies against CD14 protect primates from endotoxin-induced shock.J Clin Invest98: 1533–1538

    Article  PubMed  CAS  Google Scholar 

  64. Lee J-D, Kato K, Tobias PS, Kirkland TN, Ulevitch RJ (1992) Transfection of CD14 into 70Z/3 cells dramatically enhances the sensitivity to complexes of lipopolysaccharide (LPS) and LPS binding protein.J Exp Med175: 1697–1705

    Article  PubMed  CAS  Google Scholar 

  65. Golenbock DT, Liu Y, Millham FH, Freeman MW, Zoeller RA (1993) Surface expression of human CD14 in Chinese hamster ovary fibroblasts imparts macrophage-like responsiveness to bacterial endotoxin.J Biol Chem268: 22055–22059

    PubMed  CAS  Google Scholar 

  66. Ferrero E, Jiao D, Tsuberi BZ, Tesio L, Rong GW, Haziot A, Goyert SA (1993) Trans-genic mice expressing human CD14 are hypersensitive to lipopolysaccharide.Proc Natl Acad Sci USA90: 2380–2384

    Article  PubMed  CAS  Google Scholar 

  67. Ulevitch RJ, Tobias PS (1995) Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin.Ann Rev Immunol13: 437–457

    Article  CAS  Google Scholar 

  68. Ulevitch RJ, Tobias PS (1994) Recognition of endotoxin by cells leading to transmembrane signaling.Curr Opin in Immunol6: 125–130

    Article  CAS  Google Scholar 

  69. Jack RS, Fan W, Bernheiden M, Rune G, Ehlers M, Weber A, Kirsch G, Mentel R, Furll B, Freudenberg M, Schmitz G, Stelter F, Schutt C (1997) Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection.Nature389: 742–745

    Article  PubMed  CAS  Google Scholar 

  70. Wurfel MM, Monks BG, Ingalls RR, Dedrick RL, Delude R, Zhou D, Lamping N, Schumann RR, Thieringer R, Fenton MJ, Wright SD, Golenbock D (1997) Targetted deletion of the lipopolysaccharide (LPS)-binding protein gene leads to profound supression of LPS responsesex vivowhereasin vivoresponses remain intact.J Exp Med186: 2051–2056

    Article  PubMed  CAS  Google Scholar 

  71. Elsbach P, Weiss J (1998) Role of the bacterial/permeability-increasing protein in host defence.Curr Opin in Immunol 10:45–49

    Article  CAS  Google Scholar 

  72. Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S, Silver J, Stewart CL, Goyert SM (1996) Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice.Immunity4: 407–414

    Article  PubMed  CAS  Google Scholar 

  73. Perera P-Y, Vogel SN, Detore GR, Haziot A, Goyert SM (1997) CD14-dependent and CD14-independent signaling pathways in murine macrophages from normal and CD14 knockout mice stimulated with lipopolysaccharide or taxol.J Immunol158: 4422–4429

    PubMed  CAS  Google Scholar 

  74. Haziot A, Lin XY, Zhang F, Goyert SM (1998) The induction of acute phase proteins by lipopolysaccharide uses a novel pathway that is CD14-independent.J Immunol160: 2570–2572

    PubMed  CAS  Google Scholar 

  75. Weinstein SL, Gold MR, DeFranco AL (1991) Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages.Proc Natl Acad Sci USA88: 4148–4152

    Article  PubMed  CAS  Google Scholar 

  76. DeFranco AL, Crowley MT, Finn A, Hambleton J, Weinstein SL (1998) The role of tyrosine kinases and MAP kinases in LPS-induced signaling.Prog Clin Biol Res397: 119–136

    PubMed  CAS  Google Scholar 

  77. Weinstein SL, Sanghera JS, Lemke K, DeFranco AL, Pelech SL (1992) Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen-activated protein kinases in macrophages.J Biol Chem276: 14955–14962

    Google Scholar 

  78. Novogrodsky A, Vanichkin A, Patya M, Gazit A, Osherov N, Levitzki A (1994) Prevention of lipopolysaccharide-induced lethal toxicity by tyrosine kinase inhibitors.Science264: 1319–1322

    Article  PubMed  CAS  Google Scholar 

  79. Ding A, Sanchez E, Nathan CF (1993) Taxol shares the ability of bacterial lipopolysaccharide to induce tyrosine phosphorylation of microtubule-associated protein kinase.J Immunol151: 5596–5602

    PubMed  CAS  Google Scholar 

  80. Shapira L, Takashiba S, Champagne C, Amar S, Van Dyke TE (1994) Involvement of protein kinase C and protein tyrosine kinase in lipopolysaccharide-induced TNFα and IL-1(3 production by human monocytes.J Immunol153: 1818–1824

    PubMed  CAS  Google Scholar 

  81. Geng Y, Gulbins E, Altman A, Lotz M (1994) Monocyte deactivation by interleukin 10viainhibition of tyrosine kinase activity and the ras signaling pathway.Proc Natl Acad Sci USA91: 8602–8606

    Article  PubMed  CAS  Google Scholar 

  82. Beaty CD, Franklin TL, Uehara Y, Wilson CB (1994) Lipopolysaccharide-induced cytokine production in human monocytes: Role of tyrosine phosphorylation in trans-membrane signal transduction Eur.J Immunol24: 1278–1284

    Article  PubMed  CAS  Google Scholar 

  83. Stefanova I, Corcoran ML, Horak EM, Wahl LM, Bolen JB, Horak ID (1993) Lipopolysaccharide induces activation of CD14-associated protein tyrosine kinase p53/ 56lyn.J Biol Chem268: 20725–20728

    PubMed  CAS  Google Scholar 

  84. Meng F, Lowell CA (1997) Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, Lyn.J Exp Med185: 1661–1670

    Article  PubMed  CAS  Google Scholar 

  85. Crowley MT, Harmer SL, DeFranco AL (1996) Activation-induced association of a 145kDa tyrosine-phosphorylated protein with Shc and Syk in B lymphocytes and macrophages.J Biol Chem271: 1145–1152

    Article  PubMed  CAS  Google Scholar 

  86. Crowley MT, Costello PS, Fitzer-Attas CJ, Turner M, Meng F, Lowell C, Tybulewicz VLJ, DeFranco AL (1997) A critical role for Syk in signal transduction and phagocytosis mediated by Fc-y receptors on macrophages.J Exp Med186: 1027–1039

    Article  PubMed  CAS  Google Scholar 

  87. Dong Z, Qi X, Fidler IJ (1993) Tyrosine phosphorylation of mitogen-activated protein kinases is necessary for activation of murine macrophages by natural and synthetic bacterial products.J Exp Med177: 1071–1077

    Article  PubMed  CAS  Google Scholar 

  88. Hambleton J, Weinstein SL, Lem L, DeFranco AL (1996) Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages.Proc Natl Acad Sci USA93: 2774–2778

    Article  PubMed  CAS  Google Scholar 

  89. Sanghera JS, Weinstein SL, Aluwalia M, Girn J, Pelech SL (1996) Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages.J Immunol156: 4457–4465

    PubMed  CAS  Google Scholar 

  90. Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targetted by endotoxin and hyperosmolarity in mammalian cells.Science265: 808–811

    Article  PubMed  CAS  Google Scholar 

  91. Foey AD, Parry SL, Williams LM, Feldmann M, Foxwell BMJ, Brennan FM (1998) Regulation of monocyte IL-10 synthesis by endogenous IL-1 and TNFα: Role of the p38 and p42/44 mitogen-activated protein kinases. JImmunol160: 920–928

    PubMed  CAS  Google Scholar 

  92. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys Jr, Landvatter SW et al (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis.Nature372: 739–746

    Article  PubMed  CAS  Google Scholar 

  93. Beyaert R, Cuenda A, Berghe WV, Plaisance S, Lee JC, Haegeman G, Cohen P, Fiers W (1996) The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis in response to tumor necrosis factor.EMBO J15: 1914–1923

    PubMed  CAS  Google Scholar 

  94. Su B, Karin M (1996) Mitogen-activated protein kinase cascades and regulation of gene expression.Curr Opin in Immunol8: 402–411

    Article  CAS  Google Scholar 

  95. Karin M, Liu Z-G, Zandi E (1997) AP-1 function and regulation.Curr Opin in Cell Biol9: 240–246

    Article  CAS  Google Scholar 

  96. Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways.J Mol Med74: 589–607

    Article  PubMed  CAS  Google Scholar 

  97. Foletta VC (1996) Transcription factor AP-1, and the role of Fra-2.Immunol Cell Biol74: 121–133

    Article  PubMed  CAS  Google Scholar 

  98. Bretscher PA (1992) The two-signal model of lymphocyte activation twenty-one years later.Immunol Today13: 74–76

    Article  PubMed  CAS  Google Scholar 

  99. Linsley PS, Ledbetter JA (1993) The role of CD28 receptor during T cell responses to antigen.Ann Rev Immunol 11:191–212

    Article  CAS  Google Scholar 

  100. Ward SG, Westwick J, Hall ND, Sansom DM (1993) Ligation of CD28 receptor by B7 induces formation of D-3 phosphoinositides in T lymphocytes independently of T cell receptor/CD3 activation.Eur J Immunol23: 2572–2577

    Article  PubMed  CAS  Google Scholar 

  101. Pages F, Ragueneau M, Rottapel R, Truneh A, Nunes J, Imbert J, Olive D (1994) Binding of phosphatidyl-inositol-3-OH kinase to CD28 is required for T-cell signalling.Nature36: 327–330

    Article  Google Scholar 

  102. Boucher LM, Wiegmann K, Futterer A, Pfeffer K, Machleidt T, Schutze S, Mak TW, Kronke M (1995) CD28 signals through acidic sphingomyelinase.J Exp Med181: 2059–2068

    Article  PubMed  CAS  Google Scholar 

  103. Su B, Jacinto E, Hibi M, Kallunki T, Karin M, Ben-Neriah Y (1994) JNK is involved in signal integration during costimulation of T lymphocytes Cell 77: 727–736

    Google Scholar 

  104. Edmead CE, Patel YI, Wilson A, Boulougouris G, Hall ND, Ward SG, Sansom DM (1996) Induction of activator protein (AP)-1 and nuclear factor-KB by CD28 stimulation involves both phosphatidyl-inositol 3-kinase and acidic sphingomyelinase signals.J Immunol157: 3290–3297

    PubMed  CAS  Google Scholar 

  105. Granelli-Piperno A, Nolan P (1991) Nuclear transcription factors that bind to elements of the IL-2 promoter Induction requirements in primary T cells.J Immunol147: 2734–2739

    PubMed  CAS  Google Scholar 

  106. Rincon M, Flavell RA (1994) AP-1 transcriptional activity requires both T-cell receptor-mediated and co-stimulatory signals in primary T lymphocytes.EMBO J13: 4370–4381

    PubMed  CAS  Google Scholar 

  107. Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M (1987) Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor.Cell49: 729–739

    Article  PubMed  CAS  Google Scholar 

  108. Crabtree GR, Clipstone NA (1994) Signal transmission between the plasma membrane and nucleus of T-lymphocytes.Ann Rev Biochem63: 1045–1083

    Article  PubMed  CAS  Google Scholar 

  109. Serfling E, Avots A, Neumann M (1995) The architecture of the interleukin-2 promot-er: a reflection of T lymphocyte activation.Biochim Biophys Acta1263: 181–200

    Article  PubMed  Google Scholar 

  110. Jain J, Loh C, Rao A (1995) Transcriptional regulation of the IL-2 gene.Curr Opin in Immunol7: 333–342

    Article  CAS  Google Scholar 

  111. Bierer BE, Hollander G, Fruman D, Burakoff SJ (1993) Cyclosporin A and FK506: molecular mechanisms of immunosuppression and probes for transplantation biology.Curr Opin in Immunol5: 763–773

    Article  CAS  Google Scholar 

  112. Bram RJ, Hung DT, Martin PK, Schreiber SL, Crabtree GR (1993) Identification of the immunophilins capable of mediating inhibition of signal transduction by cyclosporin A and FK506: roles of calcineurin binding and cellular location.Mol Cell Biol13: 4760–4769

    PubMed  CAS  Google Scholar 

  113. Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences.Cell46: 705–716

    Article  PubMed  CAS  Google Scholar 

  114. Baldwin AS Jr (1996) The NF-B and IB proteins: new discoveries and insights.Ann Rev Immunol14: 649–681

    Article  CAS  Google Scholar 

  115. Siebenlist U, Franzoso G, Brown K (1994) Structure, regulation and function of NF-KB Ann Rev Cell Biol 10: 405–455

    Article  PubMed  CAS  Google Scholar 

  116. Brockman JA, Scherer DC, Hall SM, McKinsey TA, Qi X, Lee WY, Ballard DW (1995) Coupling of a signal-response domain in IKBa to mutiple pathways for NF-KB activation.Mol Cell Biol15: 2809–2818

    PubMed  CAS  Google Scholar 

  117. Chen Z, Parent L, Maniatis T (1996) Site-specific phosphorylation of IKBa by a novel ubiquitin-dependent protein kinase activity.Cell84: 853–862

    Article  PubMed  CAS  Google Scholar 

  118. Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, Maniatis T (1995) Signal-induced site-specific phosphorylation targets IxBa to the ubiquitin-proteasome pathway.Genes Dev9: 1586–1597

    Article  PubMed  CAS  Google Scholar 

  119. Sassone-Corsi P (1998) Coupling gene expression to cAMP signalling: role of CREB and CREM.Int J Biochem Cell Biol30: 27–38

    Article  PubMed  CAS  Google Scholar 

  120. Sassone-Corsi P (1995) Transcription factors responsive to cAMP.Ann Rev Cell Dev Biol 11:355–377

    Article  CAS  Google Scholar 

  121. Bohm M, Moellmann G, Cheng E, Alvarez-Franco M, Wagner S, Sassone-Corsi P, Halaban R (1995) Identification of p90rsk as the probable CREB-Ser133 kinase in human melanocytes.Cell Growth Differ6: 291–302

    PubMed  CAS  Google Scholar 

  122. Ginty DD, Bonni A, Greenberg ME (1994) Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcriptionviaphosphorylation of CREB.Cell77: 713–725

    Article  PubMed  Google Scholar 

  123. Cambier JC, Newell MK, Justement LB, McGuire JC, Leach KL, Chen ZZ (1987) Ia binding ligands and cAMP stimulate nuclear translocation of PKC in B lymphocytes.Nature327: 629–632

    Article  PubMed  CAS  Google Scholar 

  124. Yoshimasa T, Sibley DR, Bouvier M, Lefkowitz RJ, Caron MG (1987) Cross-talk between cellular signalling pathways suggested by phorbol ester adenylate cyclase phosphorylation.Nature327: 67–70

    Article  PubMed  CAS  Google Scholar 

  125. Frodin M, Peraldi P, Van Obberghen E (1994) Cyclic AMP activates the mitogen-activated protein cascade in PC12 cells.J Biol Chem269: 6207–6214

    PubMed  CAS  Google Scholar 

  126. Masquilier D, Sassone-Corsi P (1992) Transcriptional cross-talk: nuclear factors CREM and CREB bind to AP-1 sites and inhibit activation by Jun.J Biol Chem267: 22460–22466

    PubMed  CAS  Google Scholar 

  127. Gothel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts.Cell Mol Life Sci55: 423–436

    Article  PubMed  CAS  Google Scholar 

  128. Siekierka JJ (1994) Probing T-cell signal transduction pathways with the immunosuppressive drugs, FK-506 and rapamycin.Immunol Res 13: 110-116

    Article  PubMed  CAS  Google Scholar 

  129. Friedman J, Weissman I (1991) Two cytoplasmic candidates for immunophilin action are revealed by affinity for a new cyclophilin: one in the presence and one in the absence of CsA.Cell66: 799–806

    Article  PubMed  CAS  Google Scholar 

  130. Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK-506 complexes.Cell66: 807–815

    Article  PubMed  CAS  Google Scholar 

  131. Wiederrecht G, Hung S, Chan KH, Marcy A, Martin M, Calaycay J, Boulton D, Signal N, Kincaid RL, Siekierka JJ (1992) Characterization of high molecular weight FK-506 binding activities reveals a novel FK-506-binding protein as well as a protein complex.J Biol Chem267: 21753–21760

    PubMed  CAS  Google Scholar 

  132. Sewell TJ, Lam E, Martin MM, Leszyk J, Weidner J, Calaycay J, Griffin P, Williams H, Hung S, Cryan J et al (1994) Inhibition of calcineurin by a novel FK-506-binding protein.J Biol Chem269: 21094–21102

    PubMed  CAS  Google Scholar 

  133. Dennis PB, Fumagalli S, Thomas G (1999) Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation.Curr Opin Genet Dev9: 49–54

    Article  PubMed  CAS  Google Scholar 

  134. Woerly G, Brooks N, Ryffel B (1996) Effect of rapamycin on the expression of the IL-2 receptor (CD25).Clin Exp Immunol103: 322–327

    Article  PubMed  CAS  Google Scholar 

  135. Bennett WM (1998) The nephrotoxicity of new and old immunosuppressive drugs.Ren Fail20: 687–690

    Article  PubMed  CAS  Google Scholar 

  136. Zachariae H (1999) Renal toxicity of long-term cyclosporin.Scand J Rheumatol28: 65–68

    Article  PubMed  CAS  Google Scholar 

  137. Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains.Science241: 42–52

    Article  PubMed  CAS  Google Scholar 

  138. Carrera AC, Alexandrov K, Roberts TM (1993) The conserved lysine of the catalytic domain of protein kinases is actively involved in the phosphotransfer reaction and not required for anchoring ATP.Proc Natl Acad Sci USA90: 442–446

    Article  PubMed  CAS  Google Scholar 

  139. Levitzki A (1992) Tyrphostins: tyrosine kinase blockers as novel antiproliferative agents and dissectors of signal transduction.FASEB J6: 3275–3282

    PubMed  CAS  Google Scholar 

  140. Akiyama T, Ishida J, Nakagawa J, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y (1987) Genestein, a specific inhibitor of tyrosine-specific protein kinases.J Biol Chem262: 5592–5595

    PubMed  CAS  Google Scholar 

  141. Uehara Y, Murakami Y, Suzukake-Tsuchiya K, Moriya Y, Sano H, Shibata K, Omura S (1988) Effects of herbimycin derivatives on src oncogene function in relation to antitumor activity.J Antibiot (Tokyo)41: 831–834

    Article  CAS  Google Scholar 

  142. June CH, Fletcher MC, Ledbetter JA, Schieven GL, Siegel JN, Phillips AF, Samelson LE (1990) Inhibition of tyrosine phosphorylation prevents T-cell receptor-mediated signal transduction.Proc Natl Acad Sci USA87: 7722–7726

    Article  PubMed  CAS  Google Scholar 

  143. Trevillyan JM, Lu Y, Atluru D, Phillips CA, Bjorndahl JM (1990) Differential inhibition of T cell receptor signal transduction and early activation events by a selective inhibitor of protein-tyrosine kinase.J Immunol145: 3223–3230

    PubMed  CAS  Google Scholar 

  144. Mustelin T, Coggeshall KM, Isakov N, Altman A (1990) T cell antigen receptor-mediated activation of phospholipase C requires tyrosine phosphorylation.Science247: 1584–1587

    Article  PubMed  CAS  Google Scholar 

  145. Graber M, June CH, Samelson LE, Weiss A (1992) The protein tyrosine kinase inhibitor herbimycin A, but not genistein, specifically inhibits signal transduction by the T cell antigen receptor.Int Immunol4: 1201–1210

    Article  PubMed  CAS  Google Scholar 

  146. Baldan CT, Telford JL (1994) Dissection of T cell antigen receptor signaling using protein tyrosine kinase inhibitors.Eur J Immunol24: 1046–1052

    Article  Google Scholar 

  147. Hanke JH, Pollok BA, Changelian PS (1995) Role of tyrosine kinases in lymphocyte activation: Targets for drug intervention.Inflamm Res44: 357–371

    Article  PubMed  CAS  Google Scholar 

  148. Hanson GJ (1997) Inhibitors of p38 kinase.Exp Opin Ther Patents7: 729–733

    Article  CAS  Google Scholar 

  149. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys Jr, Landvatter SW et al (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis.Nature372: 739–746

    Article  PubMed  CAS  Google Scholar 

  150. Ward SG, Parry RV, Matthews J, O’Neill L (1997) A p38 MAP kinase inhibitor SB203580 inhibits CD-28-dependent T cell proliferation and IL-2 production.Biochem Soc Trans25: 304S

    Google Scholar 

  151. Faltynek CR, Wang S, Miller D, Mauvais P, Gauvin B, Reid J, Xie W, Hoekstra S, Juniewicz P, Sarup J et al (1995) Inhibition of T lymphocyte activation by a novel p56lcktyrosine kinase inhibitor.J Enzyme Inhib9: 111–122

    Article  PubMed  CAS  Google Scholar 

  152. Trevillyan JM, Chiou XG, Ballaron SJ, Tang QM, Buko A, Sheets MP, Smith ML, Putman CB, Wiedeman P, Tu N et al (1999) Inhibition of p56(lck) tyrosine kinase by isothiazolones.Arch Biochem Biophys362: 19–29

    Article  Google Scholar 

  153. Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, Pollok BA, Connelly PA (1996) Discovery of a novel, potent and Src family-selective tyrosine kinase inhibitor. Study of Lck-and FynT-dependent T cell activation.J Biol Chem271: 695–701

    Article  PubMed  CAS  Google Scholar 

  154. Gimsa U, Mitchison A, Allen R (1999) Inhibitors of Src-family tyrosine kinases favour Th2 differentiation.Cytokine 11:208–215

    Article  PubMed  CAS  Google Scholar 

  155. Shibuya H, Kohu K, Yamada K, Barsoumian EL, Perlmutter RM, Taniguchi T (1994) Functional dissection of p561ck, a protein tyrosine kinase which mediates interleukin-2induced activation of the c-fos gene.Mol Cell Biol14: 5812–5819

    Article  PubMed  CAS  Google Scholar 

  156. Nishio K, Miura K, Ohira T, Heike Y, Saijo N (1994) Genistein, a tyrosine kinase inhibitor, decreased the affinity of p56lck to beta-chain of interleukin-2 receptor in human natural killer (NK)-rich cells and decreased NK-mediated cytotoxicity.Proc Soc Exp Biol Med207: 227–233

    PubMed  CAS  Google Scholar 

  157. Taniguchi T, Miyazaki T, Minami Y, Kawahara A, Fujii H, Nakagawa Y, Hatakeyama M, Liu ZJ (1995) IL-2 signaling involves recruitment and activation of multiple tyrosine kinases by the IL-2 receptor.Ann NY Acad Sci766: 235–244

    Article  PubMed  CAS  Google Scholar 

  158. Taieb J, Blanchard DA, Auffredou MT, Chaouchi N, Vazquez A (1995)In vivoassociation between p56lck and MAP kinase during IL-2-mediated lymphocyte proliferation.J Immunol155: 5623–5630

    PubMed  CAS  Google Scholar 

  159. Miyazaki T, Taniguchi T (1996) Coupling of the IL2 receptor complex with non-receptor protein tyrosine kinases.Cancer Sury27: 25–40

    CAS  Google Scholar 

  160. Goebel J, Franks A, Robey F, Mikovits J, Lowry RP (1999) Attenuation of IL-2 receptor signaling by CD4-ligation requires polymerized cytoskeletal actin but not P56LCK.Transplant Proc31: 822–824

    Article  PubMed  CAS  Google Scholar 

  161. Jayaraman T, Ondrias K, Ondriasova E, Marks AR (1996) Regulation of the inositol 1, 4, 5-triphosphate receptor by tyrosine phosphorylation.Science272: 1492–1494

    Article  PubMed  CAS  Google Scholar 

  162. Beavo JA, Reifsnyder DH (1990) Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors.Trends Pharmacol Sci 11:150–155

    Article  PubMed  CAS  Google Scholar 

  163. Thompson WJ (1991) Cyclic nucleotide phosphodiesterases: Pharmacology, biochemistry and function.Pharmacol Ther51: 13–33

    Article  PubMed  CAS  Google Scholar 

  164. Fisher DA, Smith JF, Pillar JS, St Denis SH, Cheng JB (1998) Isolation and characterization of PDE8A, a novel human cAMP-specific phosphodiesterase.Biochem Biophys ResComm 246: 570–577

    Article  PubMed  CAS  Google Scholar 

  165. Soderling SH, Bayuga SJ, Beavo JA (1998) Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases.J Biol Chem273: 15553–15558

    Article  PubMed  CAS  Google Scholar 

  166. Fisher DA, Smith JF, Pillar JS, St Denis SH, Cheng JB (1998) Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase.J Biol Chem273: 15559–15564

    Article  PubMed  CAS  Google Scholar 

  167. Rott O, Cash E, Fleischer B (1993) Phosphodiesterase inhibitor pentoxyfylline, a selective suppressor of T helper type 1- but not type 2-associated lymphokine production, prevents induction of experimental autoimmune encephalomyelitis in Lewis rats.Eur J Immunol23: 1745–1751

    Article  PubMed  CAS  Google Scholar 

  168. Essayan DM, Huang SK, Undem BJ, Kagey-Sobotka A, Lichtenstein LM (1994) Modulation of antigen-and mitogen-induced proliferative responses of peripheral blood mononuclear cells by nonselective and isozyme selective cyclic nucleotide phosphodiesterase inhibitors.J Immunol153: 3408–3416

    PubMed  CAS  Google Scholar 

  169. Crocker IC, Townley RG, Khan MM (1996) Phosphodiesterase inhibitors suppress proliferation of peripheral blood mononuclear cells and interleukin-4 and -5 secretion by human T-helper type 2 cells.Immunopharmacol31: 223–235

    Article  CAS  Google Scholar 

  170. Giembycz MA, Corrigan CJ, Seybold J, Newton R, Barnes PJ (1996) Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4’ and CD8’ T-lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2.Brit J Pharmacol118: 1945–1958

    Article  CAS  Google Scholar 

  171. Essayan DM, Huang SK, Kagey-Sobotka A, Lichtenstein LM (1997) Differential efficacy of lymphocyte-and monocyte-selective pretreatment with a type 4 phosphodiesterase inhibitor on antigen-driven proliferation and cytokine gene expression.J Allergy Clin Immunol 99:28–37

    PubMed  CAS  Google Scholar 

  172. Essayan DM, Kagey-Sobotka A, Lichtenstein LM, Huang SK (1997) Regulation of interleukin-13 by type 4 cyclic nucleotide phosphodiesterase (PDE) inhibitors in allergen-specific human T lymphocyte clones.Biochem Pharmacol53: 1055–1060

    Article  PubMed  CAS  Google Scholar 

  173. Souness JE, Houghton C, Sardar N, Withnall MT (1997) Evidence that cyclic AMP phosphodiesterase inhibitors suppress interleukin-2 release from murine splenocytes by interacting with a `low-affinity’ phosphodiesterase 4 conformer.Br J Pharmacol121: 743–750

    Article  PubMed  CAS  Google Scholar 

  174. Essayan DM, Kagey-Sobotka A, Lichtenstein LM, Huang SK (1997) Differential regulation of human antigen-specific Th1 and Th2 lymphocyte responses by isozyme selective cyclic nucleotide phosphodiesterase inhibitors.J Pharmacol Exp Ther282: 505–512

    PubMed  CAS  Google Scholar 

  175. Lewis GM, Caccese RG, Heaslip RJ, Bansbach CC (1993) Effects of rolipram and CI-930 on IL-2 mRNA transcription in human Jurkat cells.Agents Actions39: C89–92

    Article  PubMed  CAS  Google Scholar 

  176. Schmidt J, Hatzelmann A, Fleissner S, Heimann-Weitschat I, Lindstaedt R, Szelenyi I (1995) Effect of phosphodiesterase inhibition on IL-4 and IL-5 production of the murine TH2-type T cell clone D10G41.Immunopharmacol30: 191–198

    Article  CAS  Google Scholar 

  177. Derian CK, Santulli RJ, Rao PE, Solomon HF, Barrett JA (1995) Inhibition of chemotactic peptide-induced neutrophil adhesion to vascular endothelium by cAMP modulators.J Immunol154: 308–317

    PubMed  CAS  Google Scholar 

  178. Giembycz MA (1992) Could isozyme-selective phosphodiesterase inhibitors render bronchodilator therapy redundant in the treatment of bronchial asthma?Biochem Pharmacol43: 2041–2051

    Article  PubMed  CAS  Google Scholar 

  179. Simpson PJ, Schelm JA, Smallwood JK, Clay MP, Lindstrom TD (1992) Inhibition of granulocyte cAMP-phosphodiesterase by rolipramin vivo isnot sufficient to protect the canine myocardium from reperfusion injury.J Cardiovasc Pharmacol19: 987–995

    Article  PubMed  CAS  Google Scholar 

  180. Nielson CP, Vestal RE, Sturm RJ, Heaslip R (1990) Effects of selective phosphodiesterase inhibitors on the polymorphonuclear leukocyte respiratory burst.J Allergy Clin Immunol86: 801–808

    Article  PubMed  CAS  Google Scholar 

  181. Dent G, Giembycz MA, Rabe KF, Barnes PJ (1991) Inhibition of eosinophil cyclic nucleotide PDE activity and opsonised zymosan-stimulated respiratory burst by `type IV’-selective PDE inhibitors.Brit J Pharmacol103: 1339–1346

    Article  CAS  Google Scholar 

  182. Hatzelmann A, Tenor H, Schudt C (1995) Differential effects of non-selective and selective phosphodiesterase inhibitors on human eosinophil functions.Brit J Pharmacol114: 821–831

    Article  CAS  Google Scholar 

  183. Souness JE, Carter CM, Diocee BK, Hassall GA, Wood LJ, Turner NC (1991) Characterisation of guinea-pig eosinophil phosphodiesterase activity Assessment of its involvement in regulating superoxide generation.Biochem Pharmacol42: 937–945

    Article  PubMed  CAS  Google Scholar 

  184. Torphy TJ, Livi GP (1992) Therapeutic potential of isozyme-selective phosphodiesterase inhibitors in the treatment of asthma.Adv Second Messenger Phosphoprotein Res25: 289–305

    PubMed  CAS  Google Scholar 

  185. Peachell PT, Undem BJ, Schleimer RP, MacGlashan DW Jr, Lichtenstein LM, Cieslinski LB, Torphy TJ (1992) Preliminary identification and role of phosphodiesterase isoenzymes in human basophils.J Immunol148: 2503–2510

    PubMed  CAS  Google Scholar 

  186. Kleine-Tebbe J, Wicht L, Gagne H, Friese A, Schunack W, Schudt C, Kunkel G (1992) Inhibition of IgE-mediated histamine release from human peripheral leukocytes by selective phosphodiesterase inhibitors.Agents Actions36: 200–206

    PubMed  CAS  Google Scholar 

  187. Sommer N, Loschmann PA, Northoff GH, Weller M, Steinbrecher A, Steinbach JP, Lichtenfels R, Meyermann R, Riethmuller A, Fontana A et al (1995) The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis.NatureMed 1: 244–248

    Article  PubMed  CAS  Google Scholar 

  188. Foissier L, Lonchampt M, Coge F, Canet E (1996)In vitrodown-regulation of antigen-induced IL-5gene expression and protein production by cAMP-specific phosphodiesterase type4inhibitor.J Pharmacol Exp Ther278: 1484–1490

    PubMed  CAS  Google Scholar 

  189. Kambayashi T, Jacob CO, Zhou D, Mazurek N, Fong M, Strassmann G (1995)Cyclicnucleotide phosphodiesterase type IV participates in the regulation of IL-10 and in the subsequent inhibition of TNFα and IL-6release by endotoxin-stimulated macrophages.J Immunol155: 4909–4916

    PubMed  CAS  Google Scholar 

  190. Turner NC, Wood LJ, Burns FM, Gueremy T, Souness JE (1993) The effect of cyclic AMP and cyclic GMP phosphodiesterase inhibitors on the superoxide burst of guinea-pig peritoneal macrophages.Brit J Pharmacol108: 876–883

    Article  CAS  Google Scholar 

  191. Verghese MW, McConnell RT, Strickland AB, Gooding RC, Stimpson SA, Yarnall DP, Taylor JD, Furdon PJ (1995) Differential regulation of human monocyte-derived TNFα and IL-113 by type IV cAMP-phosphodiesterase (cAMP- PDE) inhibitors.J Pharmacol Exp Ther272: 1313–1320

    PubMed  CAS  Google Scholar 

  192. Chini CC, Chini EN, Williams JM, Matousovic K, Dousa TP (1994) Formation of reactive oxygen metabolites in glomeruli is suppressed by inhibition of cAMP phosphodiesterase isozyme type IV.Kidney Int46: 28–36

    Article  PubMed  CAS  Google Scholar 

  193. Matousovic K, Grande JP, Chini CC, Chini EN, Dousa TP (1995) Inhibitors of cyclic nucleotide phosphodiesterase isozymes type-III and type-IV suppress mitogenesis of rat mesangial cells.J Clin Invest96: 401–410

    Article  PubMed  CAS  Google Scholar 

  194. Morandini R, Ghanem G, Portier-Lemarie A, Robaye B, Renaud A, Boeynaems JM (1996) Action of cAMP on expression and release of adhesion molecules in human endothelial cells.Am J Physiol270: H807–816

    PubMed  CAS  Google Scholar 

  195. Suttorp N, Weber U, Welsch T, Schudt C (1993) Role of phosphodiesterases in the regulation of endothelial permeabilityin vitro. J Clin Invest91: 1421–1428

    Article  CAS  Google Scholar 

  196. Endres S, Fulle HJ, Sinha B, Stoll D, Dinarello CA, Gerzer R, Weber PC (1991) Cyclic nucleotides differentially regulate the synthesis of tumour necrosis factor-alpha and interleukin-1 beta by human mononuclear cells Immunol 72: 56–60

    CAS  Google Scholar 

  197. Prabhakar U, Lipshutz D, Bartus JO, Slivjak MJ, Smith EF 3rd, Lee JC, Esser KM (1994) Characterization of cAMP-dependent inhibition of LPS-induced TNF alpha production by rolipram, a specific phosphodiesterase IV (PDE IV) inhibitor.Int J Immunopharmacol16: 805–816

    Article  PubMed  CAS  Google Scholar 

  198. Verghese MW, McConnell RT, Strickland AB, Gooding RC, Stimpson SA, Yarnall DP, Taylor JD, Furdon PJ (1995) Differential regulation of human monocyte-derived TNF alpha and IL-1 beta by type IV cAMP-phosphodiesterase (cAMP-PDE) inhibitors.J Pharmacol Exp Ther272: 1313–1320

    PubMed  CAS  Google Scholar 

  199. Souness JE, Griffin M, Maslen C, Ebsworth K, Scott LC, Pollock K, Palfreyman MN, Karlsson JA (1996) Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF alpha generation from human monocytes by interacting with a low-affinity’ phosphodiesterase 4 conformer.Brit J Pharmacol118: 649–658

    Article  CAS  Google Scholar 

  200. Yoshimura T, Kurita C, Nagao T, Usami E, Nakao T, Watanabe S, Kobayashi J, Yamazaki F, Tanaka H, Nagai H (1997) Effects of cAMP-phosphodiesterase isozyme inhibitor on cytokine production by lipopolysaccharide-stimulated human peripheral blood mononuclear cells.Gen Pharmacol29: 633–638

    Article  PubMed  CAS  Google Scholar 

  201. Barnette MS, Christensen SB, Essayan DM, Grous M, Prabhakar U, Rush JA, KageySobotka A, Torphy TJ (1998) SB 207499 (Ariflo), a potent and selective second-generation phosphodiesterase 4 inhibitor:in vitroanti-inflammatory actions.J Pharmacol Exp Ther284: 420–426

    PubMed  CAS  Google Scholar 

  202. Kambayashi T, Jacob CO, Zhou D, Mazurek N, Fong M, Strassmann G (1995) Cyclic nucleotide phosphodiesterase type IV participates in the regulation of IL-10 and in the subsequent inhibition of TNF-alpha and IL-6 release by endotoxin-stimulated macrophages.J Immunol155: 4909–4916

    PubMed  CAS  Google Scholar 

  203. Allen R, Rapecki S, Higgs G (1997) The role of IL-10 in the inhibition of LPS- mediat-ed TNF release from human PBMCs by phosphodiesterase 4 (PDE4) inhibitors.Inflamm Res46: S218, Abs P-1–3–11

    Google Scholar 

  204. Armstrong L, Jordan N, Millar A (1996) Interleukin 10 (IL-10) regulation of tumour necrosis factor alpha (TNF-alpha) from human alveolar macrophages and peripheral blood monocytes.Thorax51: 143–149

    Article  PubMed  CAS  Google Scholar 

  205. Seldon PM, Barnes PJ, Giembycz MA (1998) Interleukin-10 does not mediate the inhibitory effect of PDE-4 inhibitors and other cAMP-elevating drugs on liposaccharideinduced tumour necrosis factor-alpha generation from human peripheral blood monocytes.Cell Biochem Biophys29: 179–201

    Article  PubMed  CAS  Google Scholar 

  206. Gantner F, Kupferschmidt R, Schudt C, Wendel A, Hatzelmann A (1997)In vitrodifferentiation of human monocytes to macrophages: change of PDE profile and its relationship to suppression of tumour necrosis factor-alpha release by PDE inhibitors.Brit J Pharmacol121: 221–231

    Article  CAS  Google Scholar 

  207. Raeburn D, Underwood SL, Lewis SA, Woodman VR, Battram CH, Tomkinson A, Sharma S, Jordan R, Souness JE, Webber SE, Karlsson J-A (1994) Anti-inflammatory and bronchodilator properties of RP73401, a novel and selective phosphodiesterase type IV inhibitor.Brit J Pharmacol113: 1423–1431

    Article  CAS  Google Scholar 

  208. Banner KH, Marchini F, Buschi A, Moriggi E, Semeraro C, Page CP (1995) The effect of selective phosphodiesterase inhibitors in comparison with other anti-asthma drugs on allergen-induced eosinophilia in guinea-pig airways.Pulm Pharmacol8: 37–42

    Article  PubMed  CAS  Google Scholar 

  209. Gozzard N, el-Hashim A, Herd CM, Blake SM, Holbrook M, Hughes B, Higgs GA, Page CP (1996) Effect of the glucocorticosteroid budesonide and a novel phosphodiesterase type 4 inhibitor CDP840 on antigen-induced airway responses in neonatally immunised rabbits.Brit J Pharmacol118: 1201–1208

    Article  CAS  Google Scholar 

  210. Hughes B, Howat D, Lisle H, Holbrook M, James T, Gozzard N, Blease K, Hughes P, Kingaby R, Warrellow G et al (1996) The inhibition of antigen-induced eosinophilia by CDP840, a novel stereo-selective inhibitor of phosphodiesterase type 4.Brit J Pharmacol118: 1183–1191

    Article  CAS  Google Scholar 

  211. Holbrook M, Gozzard N, James T, Higgs G, Hughes B (1996) Inhibition of bronchospasm and ozone-induced airway hyperresponsiveness in the guinea-pig by CDP840, a novel phosphodiesterase type 4 inhibitor.Brit J Pharmacol118: 1192–1200

    Article  CAS  Google Scholar 

  212. Gozzard N, Herd CM, Blake SM, Holbrook M, Hughes B, Higgs G, Page CP (1996) Effects of theophylline and rolipram on antigen-induced airway responses in neonatally immunized rabbits.Brit J Pharmacol117: 1405–1412

    Article  CAS  Google Scholar 

  213. Turner CR, Cohan VL, Cheng JB, Showell HJ, Pazoles CJ, Watson JW (1996) Thein vivopharmacology of CP-80, 633, a selective inhibitor of phosphodiesterase 4.J Pharmacol Exp Ther278: 1349–1355

    PubMed  CAS  Google Scholar 

  214. Underwood DC, Bochnowicz S, Osborn RR, Kotzer CJ, Luttmann MA, Hay DW, Gorycki PD, Christensen SB, Torphy TJ (1998) Antiasthmatic activity of the second-generation phosphodiesterase 4 (PDE4) inhibitor SB 207499 (Ariflo) in the guinea-pig.J Pharmacol Exp Ther287: 988–995

    PubMed  CAS  Google Scholar 

  215. Sekut L, Yarnall D, Stimpson SA, Noel LS, Bateman-Fite R, Clark RL, Brackeen MF, Menius JA Jr, Connolly KM (1995) Anti-inflammatory activity of phosphodiesterase (PDE)-IV inhibitors in acute and chronic models of inflammation.Clin Exp Immunol100: 126–132

    Article  PubMed  CAS  Google Scholar 

  216. Nyman U, Mussener A, Larsson E, Lorentzen J, Klareskog L (1997) Amelioration of collagen II-induced arthritis in rats by the type IV phosphodiesterase inhibitor rolipram.Clin Exp Immunol108: 415–419

    Article  PubMed  CAS  Google Scholar 

  217. Tsuboi Y, Shankland SJ, Grande JP, Walker HJ, Johnson RJ, Dousa TP (1996) Suppression of mesangial proliferative glomerulonephritis development in rats by inhibitors of cAMP phosphodiesterase isozymes types III and IV.J Clin Invest98: 262–270

    Article  PubMed  CAS  Google Scholar 

  218. Badger AM, Olivera DL, Esser KM (1994) Beneficial effects of the phosphodiesterase inhibitors BRL61063, pentoxyfylline, and rolipram in a murine model of endotoxin shock.Circ Shock44: 188–195

    PubMed  CAS  Google Scholar 

  219. Fischer W, Schudt C, Wendel A (1993) Protection by phosphodiesterase inhibitors against endotoxin-induced liver injury in galactosamine-sensitized mice.Biochem Pharmacol45: 2399–2404

    Article  PubMed  CAS  Google Scholar 

  220. Sekut L, Menius JAJr, Brackeen MF, Connolly KM (1994) Evaluation of the significance of elevated levels of systemic and localized tumor necrosis factor in different animal models of inflammation.J Lab Clin Med124: 813–820

    PubMed  CAS  Google Scholar 

  221. Rabinovici R, Feuerstein G, Abdullah F, Whiteford M, Borboroglu P, Sheikh E, Phillip DR, Ovadia P, Bobroski L, Bagasra O, Neville LF (1996) Locally produced tumor necrosis factor-alpha mediates interleukin-2-induced lung injury.Circ Res78: 329–336

    Article  PubMed  CAS  Google Scholar 

  222. Howell RE, Jenkins LP, Howell DE (1995) Inhibition of lipopolysaccharide-induced pulmonary edema by isozyme-selective phosphodiesterase inhibitors in guinea-pigs.J Pharmacol Exp Ther275: 703–709

    PubMed  CAS  Google Scholar 

  223. Sommer N, Loschmann PA, Northoff GH, Weller M, Steinbrecher A, Steinbach JP, Lichtenfels R, Meyermann R, Reithmuller A, Fontana A et al (1995) The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis.Nat Med 1:244–248

    Article  PubMed  CAS  Google Scholar 

  224. Genain CP, Roberts T, Davis RL, Nguyen MH, Uccelli A, Faulds D, Li Y, Hedgpeth J, Hauser SL (1995) Prevention of autoimmune demyelination in non-human primates by a cAMP-specific phosphodiesterase inhibitor.Proc Natl Acad Sci USA92: 3601–3605

    Article  PubMed  CAS  Google Scholar 

  225. Jung S, Zielasek J, Kollner G, Donhauser T, Toyka K, Hartung HP (1996) Preventive but not therapeutic application of rolipram ameliorates experimental autoimmune encephalomyelitis in Lewis rats.J Neuroimmunol68: 1–11

    Article  PubMed  CAS  Google Scholar 

  226. Kato H, Araki T, Itoyama Y, Kogure K (1995) Rolipram, a cyclic AMP- selective phosphodiesterase inhibitor, reduces neuronal damage following cerebral ischemia in the gerbil.Eur J Pharmacol272: 107–110

    Article  PubMed  CAS  Google Scholar 

  227. Barnard JW, Siebert AF, Prasad VR, Smart DA, Strada SJ, Taylor AE, Thompson WJ (1994) Reversal of pulmonary capillary ischemia-reperfusion injury by rolipram, a cAMP phosphodiesterase inhibitor.J Appl Physiol77: 774–781

    PubMed  CAS  Google Scholar 

  228. Hulley P, Hartikka J, Abdel’Al S, Engels P, Buerki HR, Wiederhold KH, Muller T, Kelly P, Lowe D, Lubbert H (1995) Inhibitors of type IV phosphodiesterases reduce the toxicity of MPTP insubstantia nigraneuronsin vivo. Eur J Neurosci7: 2431–2440

    Article  CAS  Google Scholar 

  229. Feldmann M, Brennan FM, Maini RN (1996) Role of cytokines in rheumatoid arthritis.Ann Rev Immunol14: 397–440

    Article  CAS  Google Scholar 

  230. Feldmann M, Brennan FM, Elliott MJ, Williams RO, Maini RN (1995) TNF alpha is an effective therapeutic target for rheumatoid arthritis.Ann NY Acad Sci766: 272–278

    Article  PubMed  CAS  Google Scholar 

  231. Camussi G, Lupia E (1998) The future role of anti-tumour necrosis factor (TNF) products in the treatment of rheumatoid arthritis Drugs 55: 613–620

    CAS  Google Scholar 

  232. Moreland LW, Baumgartner SW, Schiff MH, Tindall EA, Fleischmann RM, Weaver AL, Ettlinger RE, Cohen S, Koopman WJ, Mohler K et al (1997) Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein.N Eng J Med337: 141–147

    Article  CAS  Google Scholar 

  233. Moreland LW (1998) Soluble tumor necrosis factor receptor (p75) fusion protein (ENBREL) as a therapy for rheumatoid arthritis.Rheum Dis Clin NorthAm 24: 579–591

    Article  PubMed  CAS  Google Scholar 

  234. Goldenberg MM (1999) Etanercept, a novel drug for the treatment of patients with severe, active rheumatoid arthritis.Clin Ther21: 75–87

    Article  PubMed  CAS  Google Scholar 

  235. Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, Jackson CG, Lange M, Burge DJ (1999) A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate.N Eng J Med340: 253–259

    Article  CAS  Google Scholar 

  236. Moreland LW, Schiff MH, Baumgartner SW, Tindall EA, Fleischmann RM, Bulpitt KJ, Weaver AL, Keystone EC, Furst DE, Mease PJ et al (1999) Etanercept therapy in rheumatoid arthritis A randomized, controlled trial.Ann Intern Med130: 478–486

    PubMed  CAS  Google Scholar 

  237. Maini RN, Breeveld FC, Kalden Jr, Smolen JS, Davis D, Macfarlane JD, Antoni C, Leeb B, Elliott MJ, Woody JN et al (1998) Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis.Arthritis Rheum41: 1552–1563

    Article  PubMed  CAS  Google Scholar 

  238. Moreland LW (1999) Inhibitors of tumor necrosis factor for rheumatoid arthritis.J Rheumatol26 (Suppl 57): 7–15

    Google Scholar 

  239. Dower SK, Franslow W, Jacobs C, Waugh S, Sims JE, Widmer MB (1994) Interleukin-1 antagonists.Ther Immunol1: 113–122

    PubMed  CAS  Google Scholar 

  240. Jones RE, Moreland LW (1999) Tumor necrosis factor inhibitors for rheumatoid arthritis.Bull Rheum Dis48: 1–4

    PubMed  Google Scholar 

  241. Souness JE, Foster M (1998) Potential of phosphodiesterase type IV inhibitors in the treatment of rheumatoid arthritis.Invest Drugs1: 541–553

    CAS  Google Scholar 

  242. Chikanza IC, Jawed SJ, Blake DR, Perrot S, Menkes CJ, Barnes CG, Perry JD, Wright MG (1996) Treatment of patients with rheumatoid arthritis with RP 73401 phosphodiesterase type IV inhibitor.Arthritis Rheum39: S282

    Google Scholar 

  243. Harbinson PL, MacLeod D, Hawksworth R, O’Toole S, Sullivan PJ, Heath P, Kilfeather S, Page CP, Costello J, Holgate ST, Lee TH (1997) The effect of a novel orally active selective PDE4 isoenzyme inhibitor (CDP840) on allergen-induced responses in asthmatic subjects.Eur Resp J10: 1008–1014

    Article  CAS  Google Scholar 

  244. Hughes B, Owens R, Perry M, Warrellow G, Allen R (1997) PDE 4 inhibitors: the use of molecular cloning in the design and development of novel drugs.Drug Disc Today2: 89–101

    Article  CAS  Google Scholar 

  245. Perry MJ, O’Connell J, Walker C, Crabbe T, Baldock D, Russell A, Lumb S, Huang Z, Howat D, Allen R et al (1998) CDP840 A novel inhibitor of PDE-4.Cell Biochem Biophys29: 113–132

    Article  PubMed  CAS  Google Scholar 

  246. Allen RA, Merriman MW, Perry MJ, Owens RJ (1999) Development of a recombinant cell-based system for the characterisation of phosphodiesterase 4 isoforms and evaluation of inhibitors.Biochem Pharmacol57: 1375–1382

    Article  PubMed  CAS  Google Scholar 

  247. Griswold DE, Webb EF, Badger AM, Gorycki PD, Levandoski PA, Barnette MA, Grous M, Christensen S, Torphy TJ (1998) SB 207499 (Ariflo), a second generation phosphodiesterase 4 inhibitor, reduces tumor necrosis factor alpha and interleukin-4 productionin vivo. J Pharmacol Exp Ther287: 705–711

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Allen, R.A., Rapecki, S.E. (2000). Regulation of cytokine production by inhibitors of cell signalling. In: Higgs, G.A., Henderson, B. (eds) Novel Cytokine Inhibitors. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8450-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8450-1_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9572-9

  • Online ISBN: 978-3-0348-8450-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics