Skip to main content

Cell signaling and cytokine induction by lipopolysaccharide

  • Chapter
Novel Cytokine Inhibitors

Abstract

Multicellular organisms have evolved molecular systems to recognize the structural hallmarks of pathogens and an arsenal of responses to contain and ultimately eliminate invaders. Lipopolysaccharide (LPS) derived from the cell walls of Gram-negative bacteria is an important initiator of such “innate” immune responses. This recognition normally leads to a robust local immune response to invading bacteria which is protective; however, if LPS is present in the blood, the response becomes systemic and can lead to endotoxic shock and death. The ancient threat of sepsis remains an important clinical problem today and motivates much of the interest in the molecular biology of LPS responses. Here we review recent literature relevant to LPS-induced signaling in myeloid cells, with emphasis on the contribution of these signals to cytokine expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ulevitch RJ, Tobias PS (1995) Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin.Ann Rev Immunol13: 437–457

    Article  CAS  Google Scholar 

  2. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of LPS and LPS binding protein.Science249: 1431–1433

    Article  PubMed  CAS  Google Scholar 

  3. Leturcq DJ, Moriarty AM, Talbott G, Winn RK, Martin TR, Ulevitch RJ (1996) Antibodies against CD14 protect primates from endotoxin-induced shock.J Clin Invest98: 1533–1538

    Article  PubMed  CAS  Google Scholar 

  4. Lee J-D, Kato K, Tobias PS, Kirkland TN, Ulevitch RJ (1992) Transfection of CD14 into 70Z/3 cells dramatically enhances the sensitivity to complexes of lipopolysaccharide (LPS) and LPS binding protein.J Exp Med175: 1697–1705

    Article  PubMed  CAS  Google Scholar 

  5. Golenbock DT, Liu Y, Millham FH, Freeman MW, Zoeller RA (1993) Surface expression of human CD14 in Chinese hamster ovary fibroblasts imparts macrophage-like responsiveness to bacterial endotoxin.J Biol Chem268: 22055–22059

    PubMed  CAS  Google Scholar 

  6. Ferrero E, Jiao D, Tsuberi BZ, Tesio L, Rong GW, Haziot A, Goyert SA (1993) Transgenic mice expressing human CD14 are hypersensitive to lipopolysaccharide.Proc Natl Acad Sci USA90: 2380–2384

    Article  PubMed  CAS  Google Scholar 

  7. Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S, Silver J, Stewart CL, Goyert SM (1996) Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice.Immunity4: 407–414

    Article  PubMed  CAS  Google Scholar 

  8. Gegner JA, Ulevitch RJ, Tobias PS (1995) Lipopolysaccharide (LPS) signal transduction and clearance: Dual roles for LPS binding protein and membrane CD14.J Biol Chem270: 5320–5325

    Article  PubMed  CAS  Google Scholar 

  9. Ferrero E, Hsieh C-L, Francke U, Goyert SM (1990) CD14 is a member of the family of leucine-rich proteins and is encoded by a gene syntenic with multiple receptor genes.J Immunol145: 331–336

    PubMed  CAS  Google Scholar 

  10. Medzhitov R, Janeway CA Jr (1998) An ancient system of host defense.Curr Opin Immunol10: 12–15

    Article  PubMed  CAS  Google Scholar 

  11. Juan TS, Kelley MJ, Johnson DA, Busse LA, Hailman E, Wright SD, Lichenstein HS (1995) Soluble CD14 truncated at amino acid 152 binds lipopolysaccharide (LPS) and enables cellular response to LPS.J Biol Chem270: 1382–1387

    Article  PubMed  CAS  Google Scholar 

  12. Stetler F, Bernheiden M, Menzel R, Jack RS, Witt S, Fan X, Pfister M, Schutt C (1997) Mutation of amino acids 39–44 of human CD14 abrogates binding of lipopolysaccharide andEscherichia coll.EurJ Biochem24: 100–109

    Google Scholar 

  13. Juan TS-C, Hailman E, Kelley MJ, Busse LA, Davy E, Empig CJ, Narhi LO, Wright SD, Lichenstein HS (1995) Identification of a lipopolysaccharide binding domain in CD14 between amino acids 57 and 64.J Biol Chem270: 5219–5224

    Article  PubMed  CAS  Google Scholar 

  14. Viriyakosol S, Kirkland TN (1995) A region of human CD14 required for lipopolysaccharide binding.J Biol Chem270: 361–368

    Article  PubMed  CAS  Google Scholar 

  15. Hoess A, Watson S, Siber GR, Liddington R (1993) Identification of the LPS binding domain of an endotoxin neutralising protein, Limulus anti-LPS factor.EMBO J12: 3351–3356

    PubMed  CAS  Google Scholar 

  16. Weidemann B, Brade H, Rietschel ET, Dziarski R, Bazil V, Kusumoto S, Flad HD, Ulmer AJ (1994) Soluble peptidoglycan-induced monokine production can be blocked by anti-CD14 monoclonal antibodies and by lipid A partial structures.Infect Immun62: 4709–4715

    PubMed  CAS  Google Scholar 

  17. Cleveland MG, Gorham JD, Murphy TL, Tuomanen E, Murphy KM (1996) Lipoteichoic acid preparations of gram-positive bacteria induce interleukin-12 through a CD14-dependent pathway.Infect Immun64: 1906–1912

    PubMed  CAS  Google Scholar 

  18. Pugin J, Heumann D, Tomasz A, Kravchenko VV, Akamatsu Y, Nishijima M, Glauser MP, Tobias PS, Ulevitch RJ (1994) CD14 is a pattern recognition receptor.Immunity1: 509–516

    Article  PubMed  CAS  Google Scholar 

  19. Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD (1998) Human CD14 mediates recognition and phagocytosis of apoptotic cells.Nature392: 505–509

    Article  PubMed  CAS  Google Scholar 

  20. Stahl N, Yancopoulos GD (1993) The alphas, betas and kinases of cytokine receptor complexes.Cell74: 587–590

    Article  PubMed  CAS  Google Scholar 

  21. Treanor JJS, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F et al (1996) Characterization of a multicomponent receptor for GDNF.Nature382: 80–83

    Article  PubMed  CAS  Google Scholar 

  22. Buj-Bello A, Adu J, Pinon LGP, Horton A, Thompson J, Rosenthal A, Chinchetru M, Buchman VL, Davies AM (1997) Neurturin responsiveness requires a GPI-linked receptor and the Ret receptor tyrosine kinase.Nature387: 721–724

    Article  PubMed  CAS  Google Scholar 

  23. Klein RD, Sherman D, Ho WH, Stone D, Bennett GL, Moffat B, Vandlen R, Simmons L, Gu Q, Hongo JA et al (1997) A GPI-linked protein that interacts with Ret to form a candidate neurturin receptor.Nature387: 717–721

    Article  PubMed  CAS  Google Scholar 

  24. Brown D (1993) The tyrosine kinase connection: how GPI-anchored proteins activate T cells.Curr Opin Immunol 5:349–354

    Article  PubMed  CAS  Google Scholar 

  25. Lee J-D, Kravchenko V, Kirkland TN, Han J, Mackman N, Moriarty A, Leturcq D, Tobias PS, Ulevitch RJ (1993) Glycosyl-phosphatidylinositol-anchored or integral membrane forms of CD14 mediate identical cellular responses to endotoxin.Proc Natl Acad Sci USA90: 9930–9934

    Article  PubMed  CAS  Google Scholar 

  26. Pugin J, Kravchenko VV, Lee J-D, Kline L, Ulevitch RJ, Tobias PS (1998) Cell activation mediated by glycosylphosphatidylinositol-anchored or transmembrane forms of CD14.Infect Immun66: 1174–1180

    PubMed  CAS  Google Scholar 

  27. Vita N, Lefort S, Sozzani P, Reeb R, Richards S, Borysiewicz LK, Ferrarar P, Labeta MO (1997) Detection and biochemical characteristics of the receptor for complexes of soluble CD14 and bacterial lipopolysaccharide.J Immunol158: 3457–3462

    PubMed  CAS  Google Scholar 

  28. Schletter J, Brade H, Brade L, Kruger C, Loppnow H, Kusumoto S, Rietschel ET, Flad H-D, Ulmer AJ (1995) Binding of lipopolysaccharide (LPS) to an 80-kilodalton membrane protein of human cells is mediated by soluble CD14 and LPS-binding protein.Infect Immun63: 2576–2580

    PubMed  CAS  Google Scholar 

  29. Fukuse S, Maeda T, Webb DR, Devens BH (1995) A 69-kDa membrane protein associated with lipopolysaccharide (LPS)-induced signal transduction in the human monocytic cell line THP-1.Cell Immunol164: 248–254

    Article  PubMed  CAS  Google Scholar 

  30. Petty HR, Todd RF III (1996) Integrins as promiscuous signal transduction devices.Immunol Today17: 209–212

    Article  PubMed  CAS  Google Scholar 

  31. Pearson AM (1996) Scavenger receptors in innate immunity.Curr Opin Immunol8: 20–28

    Article  PubMed  CAS  Google Scholar 

  32. Ingalls RR, Golenbock DT (1995) CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide.J Exp Med181: 1473–1479

    Article  PubMed  CAS  Google Scholar 

  33. Ingalls RR, Arnaout MA, Golenbock DT (1997) Outside-in signaling by lipopolysaccharide through a tailless integrin.J Immunol159: 433–438

    PubMed  CAS  Google Scholar 

  34. Medvedev AE, Flo T, Ingalls RR, Golenbock DT, Teti G, Vogel SN, Espevik T (1998) Involvement of CD14 and complement receptors CR3 and CR4 in nuclear factor-1(B activation and TNF production induced by lipopolysaccharide and Group B streptococcal cell walls.J Immunol160: 4535–4542

    PubMed  CAS  Google Scholar 

  35. Zarewych DM, Lindzelskii AL, Todd RF III, Petty HR (1996) LPS induces CD14 association with complement receptor type 3, which is reversed by neutrophil adhesion.J Immunol156: 430–433

    PubMed  CAS  Google Scholar 

  36. Wright SD, Detmers PA, Aida Y, Adamowski R, Anderson DC, Chad Z, Kabbash LG, Pabst MJ (1990) CD18-deficient cells respond to lipopolysaccharidein vitro. J Immunol144: 2566–2571

    PubMed  CAS  Google Scholar 

  37. Hampton RY, Golenbock DT, Penman M, Krieger M, Raetz CRH (1991) Recognition and plasma clearance of endotoxin by scavenger receptors.Nature352: 342–344

    Article  PubMed  CAS  Google Scholar 

  38. Haworth R, Platt N, Keshav S, Hughes D, Darley E, Suzuki H, Kurihara Y, Kodama T, Gordon S (1997) The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock.J Exp Med186: 1431–1439

    Article  PubMed  CAS  Google Scholar 

  39. Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection.Nature386: 292–296

    Article  PubMed  CAS  Google Scholar 

  40. Ulevitch RJ, Tobias PS (1994) Recognition of endotoxin by cells leading to transmembrane signaling.Curr Opin Immunol6: 125–130

    Article  PubMed  CAS  Google Scholar 

  41. Jack RS, Fan W, Bernheiden M, Rune G, Ehlers M, Weber A, Kirsch G, Mentel R, Furll B, Freudenberg M et al (1997) Lipopolysaccharide-binding protein is required to combat a murine Gram-negative bacterial infection.Nature389: 742–745

    Article  PubMed  CAS  Google Scholar 

  42. Wurfel MM, Monks BG, Ingalls RR, Dedrick RL, Delude R, Zhou D, Lamping N, Schumann RR, Thieringer R, Fenton MJ et al (1997) Targeted deletion of the lipopolysaccharide (LPS)-binding protein gene leads to profound supression of LPS responsesex vivowhereasin vivoresponses remain intact.J Exp Med186: 2051–2056

    Article  PubMed  CAS  Google Scholar 

  43. Wurfel MM, Kunitake ST, Lichenstein H, Kane JP, Wright SD (1994) Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS.JExpMed180: 1025–1035

    CAS  Google Scholar 

  44. Tall A (1995) Plasma lipid transfer proteins.Ann Rev Biochem64: 235–257

    Article  PubMed  CAS  Google Scholar 

  45. Elsbach P, Weiss J (1998) Role of the bactericidal/permeability-increasing protein in host defence.Curr Opin Immunol10: 45–49

    Article  PubMed  CAS  Google Scholar 

  46. Hailman E, Albers JJ, Wolfbauer G, Tu A-Y, Wright SD (1996) Neutralization and transfer of lipopolysaccharide by phospholipid transfer protein.J Biol Chem271: 12172–12178

    Article  PubMed  CAS  Google Scholar 

  47. Wurfel MM, Hailman E, Wright SD (1995) Soluble CD14 acts as a shuttle in the neutralization of lipopolysaccharide (LPS) by LPS-binding protein and reconstituted high density lipoprotein.J Exp Med181: 1743–1754

    Article  PubMed  CAS  Google Scholar 

  48. Parker TS, Levine DM, Chang JC, Laxer J, Coffin CC, Rubin AL (1995) Reconstituted high-density lipoprotein neutralizes gram-negative bacterial lipopolysaccharides in human whole blood.Infect Immun63: 253–258

    PubMed  CAS  Google Scholar 

  49. Pajkrt D, Doran JE, Koster F, Lerch PG, Arnet B, van der Poll T, ten Cate JW, van Deventer SJ (1996) Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia.J Exp Med184: 1601–1608

    Article  PubMed  CAS  Google Scholar 

  50. Ohlsson BG, Englund MCO, Karlsson A-LK, Knutsen E, Erixon C, Skribeck H, Liu Y, Bondjers G, Wieklund 0 (1996) Oxidized low density lipoprotein inhibits lipopolysaccharide-induced binding of nuclear factor-кB to DNA and the subsequent expression of tumor necrosis factor-α and interleukin-1β in macrophages.J Clin Invest98: 78–89

    Article  PubMed  CAS  Google Scholar 

  51. Neatea MG, Demacker PNM, Kullberg BJ, Boerman OC, Verschueren K, Stalenhoef AFH, van der Meer JWM (1996) Low-density lipoprotein receptor-deficient mice are protected against lethal endotoxemia and severe gram-negative infections.J Clin Invest97: 1366–1372

    Article  Google Scholar 

  52. Perera P-Y, Vogel SN, Detore GR, Haziot A, Goyert SM (1997) CD14-dependent and CD14-independent signaling pathways in murine macrophages from normal and CD14 knockout mice stimulated with lipopolysaccharide or taxol.J Immunol158: 4422–4429

    PubMed  CAS  Google Scholar 

  53. Haziot A, Lin XY, Zhang F, Goyert SM (1998) The induction of acute phase proteins by lipopolysaccharide uses a novel pathway that is CD14-independent.J Immunol160: 2570–2572

    PubMed  CAS  Google Scholar 

  54. Weinstein SL, Gold MR, DeFranco AL (1991) Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages.Proc Natl Acad Sci USA88: 4148–4152

    Article  PubMed  CAS  Google Scholar 

  55. DeFranco AL, Crowley MT, Finn A, Hambleton J, Weinstein SL (1997) The role of tyrosine kinases and MAP kinases in LPS-induced signaling. In: J Levin (ed): Endotoxin and sepsis: Molecular mechanisms of pathogenesis, host resistance, and therapy. Wiley-Liss, Inc, New York, 119–136

    Google Scholar 

  56. Weinstein SL, June CH, DeFranco AL (1993) Lipopolysaccharide-induced protein tyrosine phosphorylation in human macrophages is mediated by CD14.J Immunol151: 3829–3838

    PubMed  CAS  Google Scholar 

  57. Weinstein SL, Sanghera JS, Lemke K, DeFranco AL, Pelech SL (1992) Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen-activated protein kinases in macrophages.J Biol Chem267: 14955–14962

    PubMed  CAS  Google Scholar 

  58. Novogrodsky A, Vanichkin A, Patya M, Gazit A, Osherov N, Levitzki A (1994) Prevention of lipopolysaccharide-induced lethal toxicity by tyrosine kinase inhibitors. Science 264: 1319–1322

    Article  PubMed  CAS  Google Scholar 

  59. Ding A, Sanchez E, Nathan CF (1993) Taxol shares the ability of bacterial lipopolysaccharide to induce tyrosine phosphorylation of microtubule-associated protein kinase.J Immunol151: 5596–602

    PubMed  CAS  Google Scholar 

  60. Shapira L, Takashiba S, Champagne C, Amar S, Van Dyke TE (1994) Involvement of protein kinase C and protein tyrosine kinase in lipopolysaccharide-induced TNF-a and IL-113 production by human monocytes.J Immunol153: 1818–1824

    PubMed  CAS  Google Scholar 

  61. Geng Y, Gulbins E, Altman A, Lotz M (1994) Monocyte deactivation by interleukin 10viainhibition of tyrosine kinase activity and the ras signaling pathway.Proc Natl Acad Sci USA91: 8602–8606

    Article  PubMed  CAS  Google Scholar 

  62. Beaty CD, Franklin TL, Uehara Y, Wilson CB (1994) Lipopolysaccharide-induced cytokine production in human monocytes: Role of tyrosine phosphorylation in trans-membrane signal transduction. EurJ Immunol24: 1278–1284

    Article  PubMed  CAS  Google Scholar 

  63. Dong Z, O’Brian CA, Fidler IJ (1993) Activation of tumoricidal properties in macrophages by lipopolysaccharide requires protein-tyrosine kinase activity.J Leukoc Biol53: 53–60

    PubMed  CAS  Google Scholar 

  64. Delude RL, Fenton MJ, Savedra R Jr, Perera PY, Vogel SN, Thieringer R Golenbock, DT (1994) CD14-mediated translocation of nuclear factor-x13 induced by lipopolysaccharide does not require tyrosine kinase activity.J Biol Chem269: 22253–22260

    PubMed  CAS  Google Scholar 

  65. Geng Y, Zhang B, Lotz M (1993) Protein tyrosine kinase activation is required for lipopolysaccharide induction of cytokines in human blood monocytes.J Immunol151: 6692–6700

    PubMed  CAS  Google Scholar 

  66. Stefanova I, Corcoran ML, Horak EM, Wahl LM, Bolen JB, Horak ID (1993) Lipopolysaccharide induces activation of CD14-associated protein tyrosine kinase p53/56lyn.J Biol Chem268: 20725–20728

    PubMed  CAS  Google Scholar 

  67. Meng F, Lowell CA (1997) Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of src-family kinases hck, fgr, lyn.J Exp Med185: 1661–1670

    Article  PubMed  CAS  Google Scholar 

  68. Crowley MT, Harmer SL, DeFranco AL (1996) Activation-induced association of a 145kDa tyrosine-phosphorylated protein with she and syk in B lymphocytes and macrophages.J Biol Chem271: 1145–1152

    Article  PubMed  CAS  Google Scholar 

  69. Crowley MT, Costello PS, Fitzer-Attas CJ, Turner M, Meng F, Lowell C, Tybulewicz VLJ, DeFranco AL (1997) A critical role for syk in signal transduction and phagocytosis mediated by Fc-γ receptors on macrophages.J Exp Med186: 1027–1039

    Article  PubMed  CAS  Google Scholar 

  70. Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways.Curr Opin Cell Biol9: 180–186

    Article  PubMed  CAS  Google Scholar 

  71. Dong Z, Qi X, Fidler IJ (1993) Tyrosine phosphorylation of mitogen-activated protein kinases is necessary for activation of murine macrophages by natural and synthetic bacterial products.J Exp Med177: 1071–1077

    Article  PubMed  CAS  Google Scholar 

  72. Liu MK, Herrera-Velit P, Brownsey RW, Reiner NE (1994) CD14-dependent activation of protein kinase C and mitogen-activated protein kinases (p42 and p44) in human monocytes treated with bacterial lipopolysaccharide.J Immunol153: 2642–2652

    PubMed  CAS  Google Scholar 

  73. Swantek JL, Cobb MH, Geppert TD (1997) Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor α (TNFα) translation: glucocorticoids inhibit TNFα translation by blocking JNK/SAPK.Mol Cell Biol17: 6274–6282

    PubMed  CAS  Google Scholar 

  74. Reimann T, Buscher D, Hipskind RA, Krautwald S, Lohmann-Matthes ML, Baccarini M (1994) Lipopolysaccharide induces activation of the Raf-1/MAP kinase pathway. A putative role for Raf-1 in the induction of the IL-1ß and the TNF-α genes.J Immunol153: 5740–5749

    PubMed  CAS  Google Scholar 

  75. Buscher D, Hipskind RA, Krautwald S, Reimann T, Baccarini M (1995) Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages.Mol Cell Biol15: 466–475

    PubMed  CAS  Google Scholar 

  76. Guthridge CJ, Eidlen D, Arend WP, Gurierrez-Hartmann A, Smith MF Jr (1997) Lipopolysaccharide and Raf-1 kinase regulate secretory interleukin-1 receptor antagonist gene expression by mutally antagonistic mechanisms.Mol Cell Biol17: 1118–1128

    PubMed  CAS  Google Scholar 

  77. Morrison DK, Cutler RE Jr (1997) The complexity of Raf-1 regulation.Curr Opin Cell Biol9: 174–179

    Article  PubMed  CAS  Google Scholar 

  78. Stancato LF, Sakatsume M, David M, Dent P, Dong F, Petricoin E, Krolewski JJ, Silvennoinen O, Saharinen P, Pierce J et al (1997) Beta interferon and oncostatin M activate Raf-1 and mitogen-activated protein kinase through a JAK1-dependent pathway.Mol Cell Biol17: 3833–3840

    PubMed  CAS  Google Scholar 

  79. Ueda Y, Hirai S-I, Osada S-I, Suzuki A, Mizuno K, Ohno S (1996) Protein kinase C delta activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf.J Biol Chem271: 23512–23519

    Article  PubMed  CAS  Google Scholar 

  80. Geppert TD, Whitehurst CE, Thompson P, Beutler B (1994) Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/ MAPK pathway.Mol Med1: 93–103

    PubMed  CAS  Google Scholar 

  81. Hambleton J, McMahon M, DeFranco AL (1995) Activation of Raf-1 and mitogen-activated protein kinase in murine macrophages partially mimics lipopolysaccharideinduced signaling events.J Exp Med182: 147–154

    Article  PubMed  CAS  Google Scholar 

  82. Foey AD, Parry SL, Williams LM, Feldmann M, Foxwell BMJ, Brennan FM (1998) Regulation of monocyte IL-10 synthesis by endogenous IL-1 and TNF-α: Role of the p38 and p42/44 mitogen-activated protein kinases.J Immunol160: 920–928

    PubMed  CAS  Google Scholar 

  83. Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK) —from inflammation to development.Curr Opin Cell Biol10: 205–219

    Article  PubMed  CAS  Google Scholar 

  84. Su B, Karin M (1996) Mitogen-activated protein kinase cascades and regulation of gene expression.Curr Opin Immunol8: 402–411

    Article  PubMed  CAS  Google Scholar 

  85. Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Berijard B, Davis RJ (1996) Selective interaction of JNK protein kinase isoforms with transcription factors.EMBO J15: 2760–2770

    PubMed  CAS  Google Scholar 

  86. Hambleton J, Weinstein SL, Lem L, DeFranco AL (1996) Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages.Proc Natl Acad Sci USA93: 2774–2778

    Article  PubMed  CAS  Google Scholar 

  87. Sanghera JS, Weinstein SL, Aluwalia M, Girn J, Pelech SL (1996) Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages.J Immunol156: 4457–4465

    PubMed  CAS  Google Scholar 

  88. Sluss HK, Han Z, Barrett T, Davis RJ, Ip YT (1996) A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila.Genes Dey10: 2745–2758

    Article  CAS  Google Scholar 

  89. Derijard B, Raingeaud J, Barrett T, Wu I-H, Han J, Ulevitch RJ, Davis RJ (1995) Independent human MAP kinase signal transduction pathways defined by MEK and MKK isoforms.Science267: 682–685

    Article  PubMed  CAS  Google Scholar 

  90. Sanchez I, Hughes RT, Mayer BJ, Yee K, Woodgett JR, Avruch J, Kyriakis JM, Zon LI (1994) Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun.Nature372: 794–798

    PubMed  CAS  Google Scholar 

  91. Lin A, Minden A, Martinetto H, Claret F-X, Lange-Carter C, Mercurio F, Johnson GL, Karin M (1995) Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2.Science268: 286–290

    Article  PubMed  CAS  Google Scholar 

  92. Nishina H, Fischer KD, Radvanyl L, Shahinian A, Hakem R, Rubie EA, Bernstein A, Mak TW, Woodgett JR, Penninger JM (1997) Stress-signalling kinase Sek1 protects thymocytes from apoptosis mediated by CD95 and CD3.Nature385: 350–353

    Article  PubMed  CAS  Google Scholar 

  93. Holland PM, Suzanne M, Campbell JS, Noselli S, Cooper JA (1997) MKK7 is a stress-activated mitogen-activated protein kinase functionally related to hemipterous.J Biol Chem272: 24994–24998

    Article  PubMed  CAS  Google Scholar 

  94. Moriguchi T, Toyoshima F, Masuyama N, Hanafusa H, Gotoh Y, Nishida E (1997) A novel SAPK/JNK kinase, MKK7, stimulated by TNFα and cellular stresses.EMBO J16: 7045–7053

    Article  PubMed  CAS  Google Scholar 

  95. Ganiatsas S, Kwee L, Fujiwara Y, Perkins A, Ikeda T, Labow MA, Zon LI (1998) SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis.Proc Natl Acad Sci USA95: 6881–6886

    Article  PubMed  CAS  Google Scholar 

  96. Fanger GR, Gerwins P, Widmann C, Jarpe MB, Johnson GL (1997) MEKKs, GCKs, MLKs, PAKs, TAKs, and Tpls: upstream regulators of the c-Jun amino-terminal kinases?Curr Opin Genet Dey7: 67–74

    Article  CAS  Google Scholar 

  97. Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells.Science265: 808–811

    Article  PubMed  CAS  Google Scholar 

  98. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW et al (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis.Nature372: 739–746

    Article  PubMed  CAS  Google Scholar 

  99. Beyaert R, Cuenda A, Berghe WV, Plaisance S, Lee JC, Haegeman G, Cohen P, Fiers W (1996) The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis in response to tumor necrosis factor.EMBO J15: 1914–1923

    PubMed  CAS  Google Scholar 

  100. Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and theonine.J Biol Chem270: 7420–7426

    Article  PubMed  CAS  Google Scholar 

  101. Jiang Y, Gram H, Zhao M, New L, Gu J, Feng L, Di Padova F, Ulevitch RJ, Han J (1997) Characterization of the structure and function of the fourth member of p38 mitogenactivated protein kinases, p38δJ Biol Chem272: 30122–30128

    Article  PubMed  CAS  Google Scholar 

  102. Han ZS, Enslen H, Hu X, Meng X, Wu I-H, Barrett T, Davis RJ, Ip YT (1998) A conserved p38 mitogen-activated protein kinase pathway regulatesDrosophilaimmunity gene expression.Mol Cell Biol18: 3527–3539

    PubMed  CAS  Google Scholar 

  103. Enslen H, Raingeaud J, Davis RJ (1998) Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinases MKK3 and MKK6.J Biol Chem273: 1741–1748

    Article  PubMed  CAS  Google Scholar 

  104. Yang D, Tournier C, Wysk M, Lu HT, Xu J, Davis RJ, Flavell RA (1997) Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity.Proc Nat! Acad Sci USA94: 3004–3009

    Article  PubMed  CAS  Google Scholar 

  105. Guan Z, Buckman SY, Pentland AP, Templeton DJ, Morrison AR (1998) Induction of cyclooxygenase-2 by activated MEKK1 ->SEK1/MKK4->p3 8 mitogen-activated protein kinase pathway.J Biol Chem273: 12901–12908

    Article  PubMed  CAS  Google Scholar 

  106. Shirakabe K, Yamaguchi K, Shibuya H, Irie K, Matsuda S, Moriguchi T, Gotoh Y, Matsumoto K, Nishida E (1997) TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase.J Biol Chem272: 8141–8144

    Article  PubMed  CAS  Google Scholar 

  107. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y (1997) Induction of apoptosis by ASK1, a mammalian MAPKK that activates SAPK/JNK and p38 signaling pathways.Science275: 90–94

    Article  PubMed  CAS  Google Scholar 

  108. Zhang S, Han J, Sells MA, Chernoff J, Knaus UG, Ulevitch RJ, Bokoch GM (1995) Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1.J Biol Chem270: 23934–23926

    Article  PubMed  CAS  Google Scholar 

  109. Sonenberg N, Gingras A-C (1998) The mRNA 5’ cap-binding protein eIF4E and control of cell growth.Curr Opin Cell Biol10: 268–275

    Article  PubMed  CAS  Google Scholar 

  110. Lin L-L, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ (1993) cPLA2 is phosphorylated and activated by MAP kinase.Cell72: 269–278

    Article  PubMed  CAS  Google Scholar 

  111. Treisman R (1996) Regulation of transcription by MAP kinase cascades.Curr Opin Cell Biol8: 205–215

    Article  PubMed  CAS  Google Scholar 

  112. Sweet MJ, Hume DA (1996) Endotoxin signal transduction in macrophages.J Leukocyte Biol60: 8–26

    PubMed  CAS  Google Scholar 

  113. Wasylyk B, Hagman J, Gutierrez-Hartmann A (1998) Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway.Trends Biochem Sci23: 213–216

    Article  PubMed  CAS  Google Scholar 

  114. Treisman R (1994) Ternary complex factors: Growth factor regulated transcriptional activators.Curr Opin Genet Dev4: 96–101

    Article  PubMed  CAS  Google Scholar 

  115. Ma X, Neurath M, Gri G, Trinchieri G (1997) Identification and characterization of a novel Ets-2-related nuclear complex implicated in the activation of the human interleukin-12 p40 gene promoter.J Biol Chem 272:10389–10395

    Article  PubMed  CAS  Google Scholar 

  116. Shackelford R, Adams DO, Johnson SP (1995) IFN-y and lipopolysaccharide induce DNA binding of transcription factor PU.1 in murine tissue macrophages.J Immunol154: 1374–1382

    PubMed  CAS  Google Scholar 

  117. Karin M, Hunter T (1995) Transcriptional control by protein phosphorylation: Signal transmission from the cell surface to the nucleus.Curr Biol5: 747–757

    Article  PubMed  CAS  Google Scholar 

  118. Kramer B, Wiegmann K, Kronke M (1995) Regulation of the human TNF promoter by the transcription factor Ets.J Biol Chem270: 6577–6583

    Article  PubMed  CAS  Google Scholar 

  119. Groupp ER, Donovan-Peluso M (1996) Lipopolysaccharide induction of THP-1 cells activates binding of c-Jun, Ets, and Egr-1 to the tissue factor promoter.J Biol Chem271: 12423–12430

    Article  PubMed  CAS  Google Scholar 

  120. Gupta S, Campbell D, Derijard B, Davis RJ (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway.Science267: 389–93

    Article  PubMed  CAS  Google Scholar 

  121. Reimold AM, Grusby MJ, Kosaras B, Fries JWU, Mori R, Maniwa S, Clauss IM, Collins T, Sidman RL, Glimcher MJ, Glimcher LH (1996) Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice.Nature379: 262–265

    Article  PubMed  CAS  Google Scholar 

  122. Newell CL, Deisseroth AB, Lopez-Berestein G (1994) Interaction of nuclear proteins with an AP-1/CRE-like promoter sequence in the human TNF-a gene.J Leukocyte Biol56: 27–35

    PubMed  CAS  Google Scholar 

  123. Wedel A, Ziegler-Heitbrock HW (1995) The C/EBP family of transcription factors.Immunobiol193: 171–185

    Article  CAS  Google Scholar 

  124. Akira S, Isshiki H, Sugita T, Tanabe O, Kinoshita S, Nishio Y, Nakajima T, Hirano T, Kishimoto T (1990) A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family.EMBO J9: 1897–1906

    PubMed  CAS  Google Scholar 

  125. Natsuka S, Akira S, Nishio Y, Hashimoto S, Sugita T, Isshiki H, Kishimoto T (1992) Macrophage differentiation-specific expression of NF-IL6, a transcription factor for interleukin 6.Blood79: 460–466

    PubMed  CAS  Google Scholar 

  126. Zhang Y, Rom WN (1993) Regulation of the interleukin-113 (IL-1β) gene by mycobacterial components and lipopolysaccharide is mediated by two nuclear factor-IL6 motifs. MolCell Biol13: 3831–7

    CAS  Google Scholar 

  127. Bretz JD, Williams SC, Baer M, Johnson PF, Schwartz RC (1994) C/EBP related protein 2 confers lipopolysaccharide-inducible expression of interleukin 6 and monocyte chemoattractant protein 1 to a lymphoblastic cell line.Proc Natl Acad Sci USA91: 7306

    Article  PubMed  CAS  Google Scholar 

  128. Tanaka T, Akira S, Yoshida K, Umemoto M, Yoneda Y, Shirafuji N, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T (1995) Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages.Cell80: 353–61

    Article  PubMed  CAS  Google Scholar 

  129. Hu H-M, Baer M, Williams SC, Johnson PF, Schwartz RC (1998) Redundancy of C/EBPα, -β, and -δ in supporting the lipopolysaccharide-induced transcription of IL-6 and monocyte chemoattractant protein-1.J Immunol160: 2334–2342

    PubMed  CAS  Google Scholar 

  130. Zagariya A, Mungre S, Lovis R, Birrer M, Neww S, Thimmapaya B, Pope R (1998) Tumor necrosis factor a gene regulation: enhancement of C/EBPβ-induced activation by c-Jun.Mol Cell Biol18: 2815–2824

    PubMed  CAS  Google Scholar 

  131. Nakajima T, Kinoshita S, Sasagawa T, Sasaki K, Naruto M, Kishimoto T, Akira S (1993) Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6.Proc Natl Acad Sci USA90: 2207–2211

    Article  PubMed  CAS  Google Scholar 

  132. Wang X, Ron D (1996) Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase.Science272: 1347–1349

    Article  PubMed  CAS  Google Scholar 

  133. Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ (1997) Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation.Nature386: 296–299

    Article  PubMed  CAS  Google Scholar 

  134. Cano E, Mahadevan LC (1995) Parallel signal processing among mammalian MAPKs.Trends Biochem Sci20: 117–122

    Article  PubMed  CAS  Google Scholar 

  135. Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda AR (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins.Cell78: 1027–1037

    Article  PubMed  CAS  Google Scholar 

  136. McLaughlin MM, Kumar S, McDonnell PC, van Horn S, Lee JC, Livi GP, Young PR (1996) Identification of a mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase.J Biol Chem271: 8488–8492

    Article  PubMed  CAS  Google Scholar 

  137. Ludwig S, Engel K, Hoffmeyer A, Sithanandam G, Neufeld B, Palm D, Gaestel M, Rapp UR (1996) 3pK, a novel mitogen-activated protein (MAP) kinase-activated protein kinase is targeted by three MAP kinase pathways.Mol Cell Biol16: 6687–6697

    PubMed  CAS  Google Scholar 

  138. Ni H, Wang XS, Diener K, Yao Z (1998) MAPKAPKS, a novel mitogen-activated protein kinase (MAPK)-activated protein kinase, is a substrate of the extracellular-regulated kinase (ERK) and p38 kinase.Biochem Biophys Res Comm243: 492–496

    Article  PubMed  CAS  Google Scholar 

  139. Waskiewicz AJ, Flynn A, Proud CG, Cooper JA (1997) Mitogen-activated protein kinas-es activate the serine/threonine kinases Mnk1 and Mnk2.EMBO J16: 1909–1920

    Article  PubMed  CAS  Google Scholar 

  140. Fukunaga R, Hunter T (1997) MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates.EMBO J16: 1921–1933

    Article  PubMed  CAS  Google Scholar 

  141. Stokoe D, Campbell DG, Nakielny S, Hidaka H, Leevers SJ, Marshall C, Cohen P (1992) MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase.EMBO J11: 3985–3994

    PubMed  CAS  Google Scholar 

  142. Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC (1995) SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1.FEBS Lett364: 229–233

    Article  PubMed  CAS  Google Scholar 

  143. Tan Y, Rouse J, Cariati S, Cohen P, Comb MJ (1996) FGF and stress regulate CREB and ATF-1viaa pathway involving p38 MAP kinase and MAPKAP kinase-2.EMBO J15: 4629–4642

    PubMed  CAS  Google Scholar 

  144. Haas DW, Shepherd VL, Hagedorn CH (1992) Lipopolysaccharide stimulates phosphorylation of eukaryotic initiation factor-4F in macrophages and tumor necrosis factor participates in this event.Second Messengers Phosphoproteins14: 163–171

    PubMed  Google Scholar 

  145. Han J, Brown T, Beutler B (1990) Endotoxin-responsive sequences control cachectin/tumor necrosis factor biosynthesis at the translational level.J Exp Med171: 465–475

    Article  PubMed  CAS  Google Scholar 

  146. Kern JA, Warnock LJ, McCafferty JD (1997) The 3’ untranslated region of IL1β regulates protein production.J Immunol158: 1187–1193

    PubMed  CAS  Google Scholar 

  147. Pritchett W, Hand A, Sheilds J, Dunnington D (1995) Mechanism of action of bicyclic imidazoles defines a translational regulatory pathway for tumor necrosis factor α.J In Hamm45: 97–105

    Google Scholar 

  148. Rincon M, Enslen H, Raingeaud J, Recht M, Zapton T, Su MS-S, Penix LA, Davis RJ, Flavell RA (1998) Interferon-γ expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway.EMBO J17: 2817–2829

    Article  PubMed  CAS  Google Scholar 

  149. Chen C-Y, Del Gatto-Konczak F, Wu Z, Karin M (1998) Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway.Science280: 1945–1949

    Article  PubMed  CAS  Google Scholar 

  150. Ghosh S, May MJ, Kopp EB (1998) NF-кB and rel proteins: Evolutionarily conserved mediators of immune responses.Ann Rev Immunol16: 225–260

    Article  CAS  Google Scholar 

  151. May MJ, Ghosh S (1998) Signal transduction through NF-кB.Immunol Today19: 80–88

    Article  PubMed  CAS  Google Scholar 

  152. Böhrer H, Qiu F, Zimmermann T, Zhang Y, Jllmer T, Männel D, Böttiger BW, Stern DM, Waldherr R, Saeger HD et al (1997) Role of NFкB in the mortality of sepsis.J Clin Invest100: 972–985

    Article  PubMed  Google Scholar 

  153. Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M (1995) Immunosuppression by glucocorticoids: Inhibition of NF-кB activity through induction of IкB synthesis.Science270: 286–289

    Article  PubMed  CAS  Google Scholar 

  154. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS Jr (1995) Role of transcriptional activation of IкBα in mediation of immunosuppression by glucocorticoids.Science270: 283–286

    Article  PubMed  CAS  Google Scholar 

  155. Kopp E, Ghosh S (1994) Inhibition of NF-кB by sodium salicylate and aspirin.Science265: 956–959

    Article  PubMed  CAS  Google Scholar 

  156. Wang P, Wu P, Siegel MI, Egan RW, Billah MM (1995) Interleukin (IL)-10 inhibits nuclear factor кB (NFкB) activation in human monocytes.J Biol Chem270: 9558–9563

    Article  PubMed  CAS  Google Scholar 

  157. Trepicchio WL, Want L, Bozza M, Dorner AJ (1997) IL-11 regulates macrophage effector function through the inhibition of nuclear factor-кB.J Immunol159: 5661–5670

    PubMed  CAS  Google Scholar 

  158. Gerondakis S, Grumont R, Rourke I, Grossman M (1998) The regulation and roles of Rel/NF-кB transcription factors during lymphocyte activation.Curr Opin Immunol10: 355–359

    Article  Google Scholar 

  159. Sha WC (1998) Regulation of immune responses by NF-кB/Rel transcription factors.J Exp Med187: 143–146

    Article  PubMed  CAS  Google Scholar 

  160. Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-кB1 and NF-кB2.Nature Med3: 1285–1289

    Article  PubMed  CAS  Google Scholar 

  161. Carrasco D, Cheng J, Lewin A, Warr G, Yang H, Rizzon C, Rosas F, Snappe C, Bravo R (1998) Multiple hemopoietic defects and lymphoid hyperplasia in mice lacking the transcriptional activation domain of the c-rel protein.J Exp Med187: 973–984

    Article  PubMed  CAS  Google Scholar 

  162. Grigoriadis G, Zhan Y, Grumont RJ, Metcalf D, Handman E, Cheers C, Gerondakis S (1996) The Rel subunit of NF-кB-like transcription factors is a positive and negative regulator of macrophage gene expression: distinct roles for Rel in different macrophage populations.EMBO J15: 7099–7107

    PubMed  CAS  Google Scholar 

  163. Klement JF, Rice NR, Car BD, Abbondanzo SJ, Powers GD, Bhatt PH, Chen CH, Rosen CA, Stewart CL (1996) IкBα deficiency results in a sustained NF-кB response and severe widespread dermatitis in mice.Mol Cell Biol16: 2341–2349

    PubMed  CAS  Google Scholar 

  164. Beg AA, Sha WC, Bronson RT, Baltimore D (1995) Constitutive NF-кB activation, enhanced granulopoiesis, and neonatal lethality in IкBα-deficient mice.Genes Dey9: 2736–2746

    Article  CAS  Google Scholar 

  165. Rice NR, MacKichan ML, Israel A (1992) The precursor of NF-кB p50 has IкB-like functions.Cell71: 243–253

    Article  PubMed  CAS  Google Scholar 

  166. Ishikawa H, Claudio E, Dambach D, Raventos-Suarez C, Ryan C, Bravo R (1998) Chronic inflammation and susceptibility to bacterial infections in mice lacking the polypeptide (p)105 precursor (NF-кB1) but expressing p50.J Exp Med187: 985–996

    Article  PubMed  CAS  Google Scholar 

  167. Cordle SR, Donald R, Read MA, Hawiger J (1993) Lipopolysaccharide induces phosphorylation of MAD3 and activation of c-rel and related NF-кB proteins in human monocytic THP-1 cells.J Biol Chem268: 11803–11810

    PubMed  CAS  Google Scholar 

  168. Whiteside ST, Ernst MK, LeBail O, Laurent-Winter C, Rice N, Israel A (1995) N- and C-terminal sequences control degradation of MAD3/IkBa in response to inducers of NFкB activity.Mol Cell Biol15: 5339–5345

    PubMed  CAS  Google Scholar 

  169. Velasco M, Diaz-Guerra MJM, Martin-Sanz P, Alvarez A, Bosca L (1997) Rapid up-regulation of IкBß and abrogation of NF-кB activity in peritoneal macrophages stimulated with lipopolysaccharide.J Biol Chem272: 23025–23030

    Article  PubMed  CAS  Google Scholar 

  170. Whiteside ST, Epinat J-C, Rice NR, Israel A (1997) I kappa B epsilon, a novel member of the IкB family, controls RelA and cRel NF-кB activity.EMBO J16: 1413–1426

    Article  PubMed  CAS  Google Scholar 

  171. Baeuerle PA (1998) Pro-inflammatory signaling: Last pieces in the NF-xB puzzle?Curr Biol8: R19–R22

    Article  PubMed  CAS  Google Scholar 

  172. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) A cytokine-responsive IкB kinase that activates the transcription factor NF-кB.Nature388: 548–54

    Article  PubMed  CAS  Google Scholar 

  173. Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV (1997) IкB kinase-ß: NF-кB activation and complex formation with IкB kinase-a and NIK.Science278: 866–9

    Article  PubMed  CAS  Google Scholar 

  174. Régnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M (1997) Identification and characterization of an IкB kinase.Cell90: 373–383

    Article  PubMed  Google Scholar 

  175. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A et al (1997) IKK-1 and IKK-2: cytokine-activated IкB kinases essential for NF-кB activation [see comments].Science278: 860–6

    Article  PubMed  CAS  Google Scholar 

  176. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M (1997) The IкB kinase complex (IKK) contains two kinase subunits, IKKα and IKKß, necessary for IкB phosphorylation and NF-кB activation.Cell91: 243–252

    Article  PubMed  CAS  Google Scholar 

  177. Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F, Kirk HE, Kay RJ, Israel A (1998) Complementation cloning of NEMO, a component of the IкB kinase complex esential for NF-кB activation.Cell93: 1231–1240

    Article  PubMed  CAS  Google Scholar 

  178. Malinin NL, Boldin MP, Kovalenko AV, Wallach D (1997) MAP3K-related kinase involved in NF-кB induction by TNF, CD95 and IL-1.Nature385: 540–544

    Article  PubMed  CAS  Google Scholar 

  179. Hirano M, Osada S-I, Aoki T, Hirai S-I, Hosaka M, Inoue J-i, Ohono S (1996) MEK kinase is involved in tumor necrosis factor a-induced NF-кB activation and degradation by IкBα.J Biol Chem271: 13234–13238

    Article  PubMed  CAS  Google Scholar 

  180. Lee FS, Hagler J, Chen ZJ, Maniatis T (1997) Activation of the IxBa kinase complex by MEKK1, a kinase of the JNK pathway.Cell88: 213–222

    Article  PubMed  CAS  Google Scholar 

  181. Liu Z-G, Hsu H, Goeddel DV, Karin M (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-кB activation prevents cell death.Cell87: 565–576

    Article  PubMed  CAS  Google Scholar 

  182. Nakano H, Shindo M, Sakon S, Nishinaka S, Mihara M, Yagita H, Okumura K (1998) Differential regulation of IкB kinase α and ß by two upstream kinases, NF-кB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1.Proc Natl Acad Sci USA95: 3537–3542

    Article  PubMed  CAS  Google Scholar 

  183. Yin M-J, Christerson LB, Yamamoto Y, Kwak Y-T, Xu S, Mercurio F, Barbosa M, Cobb MH, Gaynor RB (1998) HTLV 1 Tax protein binds to MEKK1 to stimulate IкB kinase activity and NF-кB activation.Cell93: 875–884

    Article  PubMed  CAS  Google Scholar 

  184. Herrera-Velit P, Reiner NE (1996) Bacterial lipopolysaccharide induces the association and coordinate activation of p53/56lyn and phosphatidylinositol-3-kinase in human monocytes.J Immunol156: 1157–1165

    PubMed  CAS  Google Scholar 

  185. Schiff DE, Kline L, Soldau K, Lee JD, Pugin J, Tobias PS, Ulevitch RJ (1997) Phagocytosis of gram-negative bacteria by a unique CD14-dependent mechanism.J Leukocyte Biol62: 786–94

    PubMed  CAS  Google Scholar 

  186. Park YC, Lee CH, Kang HS, Chung HT, Kim HD (1997) Wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, enhances LPS-induced NO production from murine peritoneal macrophages.Biochem Biophys ResComm 240: 692–696

    Article  PubMed  CAS  Google Scholar 

  187. Hannun YA, Obeid LM (1997) Ceramide and the eukaryotic stress response.Biochem Soc Trans25: 1171–1175

    CAS  Google Scholar 

  188. Joseph CK, Wright SD, Bornmann WG, Randolph JT, Kumar ER, Bittman R, Liu J, Kolesnick RN (1994) Bacterial lipopolysaccharide has structural similarity to ceramide and stimulates ceramide-activated protein kinase in myeloid cells.J Biol Chem269: 17606–17610

    PubMed  CAS  Google Scholar 

  189. Zhang Y, Yao B, Delikat S, Bayoumy S, Lin X-H, Basu S, McGinley M, Chan-Hui P-Y, Lichenstein H, Kolesnick R (1997) Kinase suppressor of ras is ceramide-activated protein kinase.Cell89: 63–72

    Article  PubMed  CAS  Google Scholar 

  190. Barber SA, Perera P-Y, Vogel SN (1995) Defective ceramide response in C3H/HeJ (Lpsd) macrophages.J Immunol 155:2303–2305

    PubMed  CAS  Google Scholar 

  191. Wright SD, Kolesnick RN (1995) Does endotoxin stimulate cells by mimicking ceramide?Immunol Today16: 297–302

    Article  PubMed  CAS  Google Scholar 

  192. Letari O, Nicosia S, Chiavaroli C, Vacher P, Schlegel W (1991) Activation by bacterial lipopolysaccharide causes changes in the cytosolic free calcium concentration in single peritoneal macrophages.J Immunol147: 980–983

    PubMed  CAS  Google Scholar 

  193. Hempel WM, DeFranco AL (1991) Expression of phospholipase C isozymes by murine B lymphocytes.J Immunol146: 3713–3720

    PubMed  CAS  Google Scholar 

  194. Natarajan V, Iwamoto GK (1994) Lipopolysaccharide-mediated signal transduction through phospholipase D activation in monocytic cell lines.Biochim Biophys Acta1213: 14–20

    Article  PubMed  CAS  Google Scholar 

  195. Daniel-Issakani S, Siegel AM, Strulovici B (1989) Lipopolysaccharide response is linked to the GTP binding protein, Gi2, in the promonocytic cell line U937.J Biol Chem264: 20240–20247

    PubMed  CAS  Google Scholar 

  196. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll.Proc Natl Acad Sci USA95: 588–593

    Article  PubMed  CAS  Google Scholar 

  197. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.Nature388: 394–397

    Article  PubMed  CAS  Google Scholar 

  198. Trofimova M, Sprenkle AB, Green M, Sturgill TW, Goebl MG, Harrington MA (1996) Developmental and tissue-specific expression of mouse pelle-like protein kinase.J Biol Chem271:17609–17612

    Article  PubMed  CAS  Google Scholar 

  199. Cao Z, Henzel WJ, Gao X (1996) IRAK: a kinase associated with the interleukin-1 receptor.Science271: 1128–1131

    Article  PubMed  CAS  Google Scholar 

  200. Weinstein SL, Finn AJ, Dave S, Meng F, Lowell CA, Sanghera JS, DeFranco AL (2000) Phosphatidylinositol 3-kinase and mTOR mediate lipopolysaccharide-stimulated nitric oxide production in macrophages via interferon-ß.J Leuk Biol67: 405–414

    CAS  Google Scholar 

  201. MacKichan ML, DeFranco AL (1999) Role of ceramide in lipopolysaccharide (LPS)induced signaling. LPS increases ceramide rather than acting as a structural homolog.J Biol Chem274: 1767–1775

    Article  PubMed  CAS  Google Scholar 

  202. Anderson KV (2000) Toll-signaling pathways in the innate immune response. CurrOpin Immunol12: 13–19

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

MacKichan, M.L., DeFranco, A.L. (2000). Cell signaling and cytokine induction by lipopolysaccharide. In: Higgs, G.A., Henderson, B. (eds) Novel Cytokine Inhibitors. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8450-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8450-1_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9572-9

  • Online ISBN: 978-3-0348-8450-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics