Skip to main content

The roles of carbonic anhydrase in metabolism, cell growth and cancer in animals

  • Chapter
The Carbonic Anhydrases

Part of the book series: EXS 90 ((EXS,volume 90))

Abstract

Viewed from the standpoint of chemical reactivity, CO2 would appear to be a more appropriate substrate than bicarbonate for carboxylation reactions, since it would be more susceptible to nucleophilic attack. However, in aqueous medium, the equilibrium between dissolved CO2 and bicarbonate is such that, at physiological pH, bicarbonate is present at some 20-fold higher concentration. Furthermore, bicarbonate probably has greater potential for binding to enzymes since it is a more polar molecule than CO2. It is perhaps not surprising then, that although the product of decarboxylation reactions in catabolic processes is CO2, several carboxylating enzymes have evolved to employ bicarbonate, not CO2, as their substrate. The carboxylating enzymes in animals, which are known to bind bicarbonate as substrate, are the biotin-dependent carboxylases and the carbamoyl phosphate synthetase isozymes. These enzymes bind bicarbonate, but then generally convert it either to CO2 (biotin-dependent carboxylases) or to an activated form of CO2 (carbamoyl phosphate synthetases). Carbonic anhydrase (CA) is perhaps alone among enzymes in being able to bind either of these substrates. (For reviews see Rubio, 1986; Knowles, 1989 and O’Leary, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aas M, Bremer J (1968) Short-chain fatty acid activation in rat liver: a new assay procedure for the enzymes and studies on their intracellular localization. Biochim Biophys Acta. 164: 157–166

    Article  PubMed  CAS  Google Scholar 

  • Alldred JB, Reilly KE (1997) Short-term regulation of acetyl CoA carboxylase in tissues of higher animals. Prog Lipid Res. 35: 371–385

    Article  Google Scholar 

  • Anderson RE, Engstrom FL, Woodbury DM (1984) Localization of carbonic anhydrase in the cerebrum and cerebellum of normal and audiogenic seizure mice. Ann NY Acad Sci. 429: 502–504

    Article  PubMed  CAS  Google Scholar 

  • Aoki T, Weber G (1981) Carbamoyl phosphate synthetase (glutamine-hydrolyzing): increased activity in cancer cells. Science. 212: 463–465

    Article  PubMed  CAS  Google Scholar 

  • Attwood PV (1995) The structure and mechanism of action of pyruvate carboxylase. Int J Biochem Cell Biol. 27: 231–249

    Article  PubMed  CAS  Google Scholar 

  • Balboni E, Lehninger AL (1986) Entry and exit pathways of CO2 in rat liver mitochondria respiring in a bicarbonate buffer system. J Biol Chem. 261: 3563–3570

    PubMed  CAS  Google Scholar 

  • Baranyai JM, Blum JJ (1989) Quantitative analysis of intermediary metabolism in rat hepatocytes incubated in the presence and absence of ethanol with a substrate mixture including ketoleucine. Biochem J 258.: 121–140

    PubMed  CAS  Google Scholar 

  • Barth C, Sladek M, Decker K (1971) The subcellular distribution of short-chain fatty acyl-CoA synthetase activity in rat tissues. Biochim Biophys Acta. 248: 24–33

    Article  PubMed  CAS  Google Scholar 

  • Bode AM, Foster JD, Nordlie RC (1994) Glycogenesis from glucose and ureagenesis in isolated perfused rat livers. J Biol Chem. 269: 7879–7886

    PubMed  CAS  Google Scholar 

  • Boriack-Sjodin PA, Heck RW, Liapis PJ, Silverman DN, Christianson DW (1995) Structure determination of murine mitochondrial carbonic anhydrase Vat 2.45 A resolution: implications for catalytic proton transfer and inhibitor design. Proc Natl Acad Sci USA. 92: 10 949–10 953

    Google Scholar 

  • Bray GA (1972) Lipogenesis in human adipose tissue: some effects of nibbling and gorging. J Clin Invest 51.: 537–548

    Article  PubMed  CAS  Google Scholar 

  • Cammer W (1991) Immunostaining of carbamoylphosphate synthetase II and fatty acid synthase in glial cells in rat, mouse and hamster brains suggest roles for carbonic anhydrase in biosynthetic processes. Neurosci Lett. 129: 247–250

    Article  PubMed  CAS  Google Scholar 

  • Cammer W, Downing M (1991) Localization of the multifunctional protein CAD in astrocytes of rodent brain. J Histochem Cytochem. 39: 695–700

    Article  PubMed  CAS  Google Scholar 

  • Cammer W, Zhang H (1992) Carbonic anhydrase in distinct precursors of astrocytes and oligodendrocytes in the forebrains of neonatal and young rats. Brain Res Dev Brain Res. 67: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Cao TP, Rous S (1978) Inhibitory effects of acetazolamide on the activity of acetyl CoA carboxylase of mouse liver. Life Sci. 22: 2067–2072

    Article  PubMed  CAS  Google Scholar 

  • Chappell JB, Crofts AR (1966) Ion transport and reversible volume changes of isolated mito-chondria. In: JM Tager, S Papa, E Quagliariello, EC Slater (eds): Regulation of metabolicprocesses in mitochondria. BBA Library, No. 7, Elsevier, Amsterdam, 293–314

    Google Scholar 

  • Chegwidden WR, Spencer IM (1995) Sulphonamide inhibitors of carbonic anhydrase inhibit the growth of human lymphoma cells in culture. Inflammopharmacology. 3: 231–239

    Article  CAS  Google Scholar 

  • Chegwidden WR, Spencer IM (1996) Carbonic anhydrase provides bicarbonate for de novo. lipogenesis in the locust. Comp Biochem Physiol. 115B: 247–254

    Article  Google Scholar 

  • Chegwidden WR, Tashian RE, Wiebauer KE (1996) CA IB: a second gene for human carbonic anhydrase I. Isozyme Bull. 28: 36

    Google Scholar 

  • Cheng S, Levy D (1980) Characterization of the anion transport system in hepatocyte plasma membranes. J Biol Chem. 255: 2637–2640

    PubMed  CAS  Google Scholar 

  • Coulson RA, Herbert JD (1984) A role for carbonic anhydrase in intermediary metabolism. Am NY Acad Sci. 429: 505–515

    Article  CAS  Google Scholar 

  • Coulson RA, Hernandez T (1979) Factors controlling glycogen breakdown in the alligator. Comp Biochem Physiol. 66B: 67–73

    Google Scholar 

  • Dodgson SJ (1987) Inhibition of mitochondrial carbonic anhydrase: a discrepancy examined. J Appl Physiol. 63: 2134–2141

    PubMed  CAS  Google Scholar 

  • Dodgson SJ, Cherian K (1989) Mitochondrial carbonic anhydrase is involved in rat renal glucose synthesis. Amer J Physiol. 257: E791 —796

    Google Scholar 

  • Dodgson SJ, Cherian K (1990) Rat renal tubular gluconeogenesis: possible involvement of nonmitochondrial carbonic anhydrase isozymes. Arch Biochem Biophys. 282: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Dodgson SJ, Forster RE II (1986) Carbonic anhydrase: inhibition results in decreased urea production by hepatocytes. J Appl Physiol. 60: 646–652

    PubMed  CAS  Google Scholar 

  • Dodgson SJ, Forster RE II, Schwed DA, Storey BT (1983) Contribution of matrix carbonic anhydrase to citrulline synthesis in isolated guinea pig liver mitochondria. J Biol Chem. 258: 7696–7701

    PubMed  CAS  Google Scholar 

  • Dodgson SJ, Forster RE II, Storey BT, Mela L (1980) Mitochondrial carbonic anhydrase: the purified enzyme. Ann NY Acad Sci. 429: 210–211

    Google Scholar 

  • Downer RGH (1985) Lipid metabolism. In: GA Kerkut, LJ Gilbert (eds): Comprehensive insect physiology and pharmacology., Vol. 10, Pergamon Press, New York, 77–114

    Google Scholar 

  • During MJ, Fried I, Leone P, Katz A, Spencer DD (1994) Direct measurement of extracellular lactate in the human hippocampus during spontaneous siezures. J Neurochem. 62: 2356–2361

    Article  PubMed  CAS  Google Scholar 

  • Earnhardt JN, Quian M, Tu C-K, Lakkis MM, Bergenhem NCH, Liapis PJ, Tashian RE, Silverman DN (1998) The catalytic properties of murine carbonic anhydrase VII. Biochemistry. 37: 10 837–10 845

    Article  PubMed  CAS  Google Scholar 

  • Firestine SM, Davisson VJ (1994) Carboxylases in de novo. purine biosynthesis. Characterization of the Gallus gallus. bifunctional enzyme. Biochemistry. 33: 11917–11926

    Article  PubMed  CAS  Google Scholar 

  • Firestine SM, Poon S-W, Mueller EJ, Stubbe J, Davisson VJ (1994) Reactions catalyzed by 5- aminoimidazole ribonucleotide carboxylases from Escherichia coli. and Gallus gallus.: a case for divergent catalytic mechanisms? Biochemistry. 33: 11 927–11 934

    Article  PubMed  CAS  Google Scholar 

  • Griffiths JR (1991) Are cancer cells acidic? Br J Cancer. 64: 425–437

    Article  PubMed  CAS  Google Scholar 

  • Guthörlein G, Knappe J (1969) Structure and function of carbamoylphosphate synthetase. On the mechanism of bicarbonate activation. Eur J Biochem. 8: 207–214

    Article  Google Scholar 

  • Hashimoto T, Numa S (1971) Kinetic studies on the reaction mechanism and citrate activation of liver acetyl coenzyme A carboxylase. Eur J Biochem. 18: 319–331

    Article  PubMed  CAS  Google Scholar 

  • Hastings AB, Longmore WJ (1965) Carbon dioxide and pH as regulatory factors in metabolism. Adv Enz Reg. 3: 147–159

    Article  CAS  Google Scholar 

  • Häussinger D, Gerok W (1985) Hepatic urea synthesis and pH regulation. Role of CO2, HCO 3 , pH and the activity of carbonic anhydrase. Eur J Biochem. 152: 381–386

    Article  PubMed  Google Scholar 

  • Hazen SA, Waheed A, Sly WS, Lalloue KF, Lynch CJ (1996) Differentiation-dependent expression of CA V and the role of carbonic anhydrase isozymes in pyruvate carboxylation in adipocytes. FASEB J 10.: 4, 481–490

    PubMed  CAS  Google Scholar 

  • Hazen SA, Waheed A, Sly WS, Lalloue KF, Lynch CJ (1997) Effect of carbonic anhydrase inhibition and acetoacetate on anaplerotic pyruvate carboxylase activity in cultured rat astrocytes. Dev Neurosci. 19: 162–171

    Article  PubMed  CAS  Google Scholar 

  • Heck RW, Tanhauser SM, Manda R, Tu C-K, Liapis RI, Silverman DN (1994) Catalytic properties of mouse carbonic anhydrase V. J Biol Chem. 269: 24742–24746

    PubMed  CAS  Google Scholar 

  • Hers HG, Hue L (1983) Gluconeogenesis and related aspects of glycolysis. Ann Rev Biochem. 52: 617–653

    Article  PubMed  CAS  Google Scholar 

  • Hewett-Emmett D, Cook RG, Dodgson SJ (1986) Carbonic anhydrase from hepatocyte mitochondria of guinea pig is the product of a novel gene and is not a CA II “splisozyme”. Isozyme Bulletin. 19: 13

    Google Scholar 

  • Ivanov SV, Kuzmin I, Wei M-H, Pack S, Geil L, Johnson BE, Stanbridge EJ, Lerman M-I (1998) Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci USA. 95: 12596–12601

    Article  PubMed  CAS  Google Scholar 

  • Kay MMB, Tracey CM, Goodman JR, Cone JC, Bassel PS (1983) Polypeptides immunologically related to band 3 are present in unnucleated somatic cells. Proc Natl Acad Sci USA. 80: 6882–6886

    Article  PubMed  CAS  Google Scholar 

  • Kim K-H (1983) Regulation of acetyl CoA carboxylase. Curr Top Cell Reg. 22: 143–176

    CAS  Google Scholar 

  • Knowles JR (1989) The mechanism of biotin-dependent enzymes. Annu Rev Biochem. 58: 195–221

    Article  PubMed  CAS  Google Scholar 

  • Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L (1993) Identification of the von Hippel-Lindau disease tumour suppressor gene. Science. 260: 1317–1320

    Article  PubMed  CAS  Google Scholar 

  • Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry. 2nd ed., Worth Publishers, New York

    Google Scholar 

  • Lipsen B, Effros RM (1988) CO2 and bicarbonate exchange in the rat liver. J Appl Physiol. 65: 2736–2743

    PubMed  CAS  Google Scholar 

  • Lof C, Cohen M, Vermeulen LP, van Roermund CW, Wanders RJ, Meijer AJ (1983) Properties of carbamoyl-phosphate synthetase (ammonia) in rat liver mitochondria made permeable with toluene. Eur J Biochem. 135: 251–258

    Article  PubMed  CAS  Google Scholar 

  • Longmuir IS, Forster RE II, Woo CY (1966) Diffusion of carbon dioxide through thin layers of solution. Nature (London). 209: 393–394

    Article  CAS  Google Scholar 

  • Lynch CJ, Fox H, Hazen SA, Stanley BA, Dodgson SJ, Lanoue KF (1995) Role of hepatic carbonic anhydrase in de novo. lipogenesis. Biochem J 310.: 197–202

    PubMed  CAS  Google Scholar 

  • Maren TH, Sanyal G (1983) The activity of sulphonamides and anions against the carbonic anhydrases of animals, plants and bacteria. Annu Rev Pharmacol Toxicol. 23: 439–459

    Article  PubMed  CAS  Google Scholar 

  • Maren TH, Conroy CW (1993) A new class of carbonic anhydrase inhibitor. J Biol Chem. 268: 26233–26239

    PubMed  CAS  Google Scholar 

  • Marsolais C, Hurt S, David F, Garneau M, Brunengraber H (1987) Compartmentation of 14CO2 in the perfused rat liver. J Biol Chem. 262: 2604–2607

    PubMed  CAS  Google Scholar 

  • Martinez-Zaguilan R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ (1996) Acidic pH enhances the invasive behaviour of human melanoma cells. Glitz Exp Metastasis. 14: 176–186

    Article  CAS  Google Scholar 

  • McClure WR, Lardy HA, Wagner M, Cleland WW (1972) Rat liver pyruvative kinase II kinetic studies of the forward reaction. J Biol Chem. 246: 3579–3583

    Google Scholar 

  • McKiernan JM, Buttyan R, Bander NH, Stifelman MD, Katz AE, Chen M-W, Olsson CA, Sawczuk IS (1997) Expression of the tumor-associated gene MN.: a potential biomarker for human renal cell carcinoma. Cancer Res 57.: 2362–2365

    PubMed  CAS  Google Scholar 

  • Meijer AJ, Hensgens ESJ (1982) Ureagenesis. In: H Seiss (ed): Metabolic compartmentation., Academic Press, New York, 259–286

    Google Scholar 

  • Metcalfe HK, Monson JP, Drew PT, Iles RA, Carter ND, Cohen RD (1985) Inhibition of gluconeogenesis and urea synthesis in isolated rat hepatocytes by acetazolamide. Biochem. Soc Trans. 13: 255

    CAS  Google Scholar 

  • Mitelman F (1994) Chromosome 15 and Chromosome 17. In: F Mitelman, B Johansson, F Mertens (eds): Catalog of Chromosome Abberations in Cancer. 5th ed., Wiley, New York, 2485–2619 and 2748–2930

    Google Scholar 

  • Murakami H, Sly WS (1987) Purification and characterization of human salivary carbonic anhydrase. J Biol Chem. 262: 1382–1388

    PubMed  CAS  Google Scholar 

  • Nagao Y, Srinivasan M, Plataro JS, Svendrowski M, Waheed A, Sly W (1994) Mitochondrial carbonic anhydrase (isozyme V) in mouse and rat: cDNA cloning, expression, subcellular localization, processing and tissue distribution. Proc Nat Acad Sci USA. 91: 10330–10334

    Article  PubMed  CAS  Google Scholar 

  • Natale PJ, Tremblay GC (1969) On the availability of intramitochondrial carbamoyl phosphate for the extramitochondrial biosynthesis of pyrimidines. Biochem. Biophys Res Commun. 37: 512–517

    Article  CAS  Google Scholar 

  • O’Leary MH (1992) Catalytic strategies in enzymic carboxylation and decarboxylation. In: PD Boyer (ed): The Enzymes., Third Edition, vol. XX, Academic Press, New York, 235–269

    Google Scholar 

  • Oliver J, Spencer IM, Chegwidden WR (1996) Carbonic anhydrase: a putative role in myelina-tion. Isozyme Bull. 29: 14

    Google Scholar 

  • Pastorek J, Pastoreková S, Callebaut I, Mornon JP, Zelnik V, Opayský R, Zat’ovicová M, Liao S, Portetelle D, Stanbridge EJ, Závada J, Burny A, Kettmann R (1994) Cloning and characterization of MN, a tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene. 9: 2877–2888

    PubMed  CAS  Google Scholar 

  • Pastoreková S, Závadová Z, Koštál M, Babuošíková O, Závada J (1992) A novel quasi-viral agent, MaTu, is a two-component system. Virology. 187: 620–626

    Article  PubMed  Google Scholar 

  • Patel TB, Barron LL, Olson MS (1981) The effect of acetate on the regulationof the branched chain a-keto acid and the pyruvate dehydrogenase complexes in the perfused rat liver. Arch Biochem Biophys. 212: 452–461

    Article  PubMed  CAS  Google Scholar 

  • Reardon MA, Weber G (1986) Increased synthesis of carbamoyl-phosphate synthase II (EC 6.3.5.5) in hepatoma 3924A. Cancer Res. 46: 3673–3676

    PubMed  CAS  Google Scholar 

  • Rognstad R (1983) CO2 metabolism in the liver. Arch Biochem Biophys. 222: 442–448

    Article  PubMed  CAS  Google Scholar 

  • Rous S, Favarger P (1963) Recherches sur la synthèses des acids gras XIII. Influence de l’acéta-zolamide seul ou associé à l’insuline sur la synthèse in vivo. des acides gras chez la souris. Helv Chim Acta. XLVI: 2586–2591

    Article  Google Scholar 

  • Rous S, Favarger P (1964) Influence of bicarbonate upon fatty acid synthesis. Med Exp 11.: 303 —307

    PubMed  Google Scholar 

  • Roussel G, Delaunoy JP, Nussbaum JL, Mandel P (1979) Demonstration of a specific localization of carbonic anhydrase C in the glial cells of rat CNS by an immunohistochemical method. Brain Res. 160: 47–55

    Article  PubMed  CAS  Google Scholar 

  • Rowan AN, Newsholme EA, Scrutton MC (1978) Partial purification and some properties of pyruvate carboxylase from the flight muscle of the locust (Schistocerca gregaria). Biochim Biophys Acta. 522: 270–275

    Article  PubMed  CAS  Google Scholar 

  • Saarnio J, Parkkila S, Parkkila A-K, Haukipuro K, Pastoreková S, Pastorek J, Kairaluoma MI, Karttunen TJ (1998) Immunohistochemical study of colorectal tumors for expression of a novel transmembrane carbonic anhydrase, MN/CA IX, with potential value as a marker of cell proliferation. Am J Pathol. 153: 279–185

    Article  PubMed  CAS  Google Scholar 

  • Siess EA, Brocks DG, Wieland OH (1978) Distribution of metabolites between the cytosolic and mitochondrial compartments of hepatocytes isolated from fed rats. Hoppe-Seyler’s Z Physiol Chem. 359: 785–798

    Article  PubMed  CAS  Google Scholar 

  • Soboll S, Scholz R, Friesl M, Elbers R, Heldt HW (1976) Distribution of metabolites between mitochondria and cytosol of perfused liver. In: JM Tager, HD Soling, JR Williamson (eds): Use of isolated liver cells and kidney tubules in metabolic studies. North-Holland, Amsterdam, 29–40

    Google Scholar 

  • Spencer IM, Dawson M, Chegwidden WR (1994) The role of carbonic anhydrase in biosynthetic processes. Isozyme Bull. 27: 42

    Google Scholar 

  • Spencer IM, Hargreaves I, Chegwidden WR (1988) Effect of the carbonic anhydrase inhibitor acetazolamide on lipid synthesis in the locust. Biochem Trans. 16: 973–974

    CAS  Google Scholar 

  • Spencer IM, O’Boyle F, Chegwidden WR (1990) Suggested roles for carbonic anhydroase in intermediary metabolism. Isozyme Bull. 23: 70

    Google Scholar 

  • Storey BT, Dodgson SJ, Forster RE II (1984) Mitochondrial carbonic anhydrase: the purified enzyme. Ann NY Acad Sci. 429: 210–211

    Article  CAS  Google Scholar 

  • Tannen RL, Ross BD (1983) The impact of acetazolamide on renal ammoniagenesis and gluconeogenesis. J Lab Clin Med. 102: 536–542

    PubMed  CAS  Google Scholar 

  • Teicher BA, Liu S-D, Liu J-T, Holden SA, Herman TS (1993) A carbonic anhydrase inhibitor as a potential modulator of cancer therapies. Anticancer Res. 13: 1549–1556

    PubMed  CAS  Google Scholar 

  • Thomas AP, Halestrap AP (1981) The role of mitochondrial pyruvate transport in the stimulation by glucagon and phenylephrine of gluconeogenesis from L-lactate in isolated rat hepatocytes. Biochem J 198.: 551–564

    PubMed  CAS  Google Scholar 

  • Torczynski RM, Bollon AP (1996) US Patent 5: 589–579

    Google Scholar 

  • Tremblay GC, Crandall DE, Knott CE, Alfant M (1977) Orotic acid biosynthesis in rat liver: studies on the source of carbamoylphosphate. Arch Biochem Biophys. 178: 264–277

    Article  PubMed  CAS  Google Scholar 

  • Türeci Ö, Sahin U, Vollmar E, Siemar S, Göttert E, Seitz G, Parkkila A-K, Shah GN, Grubb JH, Pfreundschuh M, Sly WS (1998) Human carbonic anhydrase XII: cDNA cloning, expression, and chromosomal localization of a carbonic anhydrase gene that is overexpressed in some renal cell cancers. Proc Natl Acad Sci USA. 95: 7608–7613

    Article  PubMed  Google Scholar 

  • Vince JW, Reithmeier RAF (1998) Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte Cl/HCO 3 exchanger. J Biol Chem. 273 (43): 28430–28437

    Article  PubMed  CAS  Google Scholar 

  • Wanders RJA, van Roermund CWT, Meijer AJ (1984) Analysis of the control of citrulline synthesis in isolated rat liver mitochondria. Europ J Biochem. 142: 247–254

    Article  PubMed  CAS  Google Scholar 

  • Yeh L-A, Kim K-H (1980) Regulation of acetyl CoA carboxylase: Properties of CoA activation of acetyl-CoA carboxylase. Proc Natl Acad Sci USA 77: 3351–3355

    Article  PubMed  CAS  Google Scholar 

  • Yeh L-A, Song C-S, Kim K-H (1981) Coenzyme A activation of acetyl CoA carboxylase. J Biol Chem. 256: 2289–2296

    PubMed  CAS  Google Scholar 

  • Závada J, Závadová Z, Pastoreková S, Ciampor F, Pastorek J, Zelnick V (1993) Expression of MaTu-MN protein in human tumor cultures and in clinical specimens. Int J Cancer. 54: 268–274

    Article  PubMed  Google Scholar 

  • Zbar B, Kaelin W, Maher E, Richard S (1999) Third International Meeting on von HippelLindau Disease. Cancer Res. 59: 2251–2253

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Chegwidden, W.R., Dodgson, S.J., Spencer, I.M. (2000). The roles of carbonic anhydrase in metabolism, cell growth and cancer in animals. In: Chegwidden, W.R., Carter, N.D., Edwards, Y.H. (eds) The Carbonic Anhydrases. EXS 90, vol 90. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8446-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8446-4_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9570-5

  • Online ISBN: 978-3-0348-8446-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics