Skip to main content

Some Practical Issues and Possible Solutions for Nonlinear Model Predictive Control

  • Conference paper
Nonlinear Model Predictive Control

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 26))

Abstract

Several practical issues (e.g., excessive on-line computational time) associated with a conventional Nonlinear Model Predictive Control algorithm are illustrated through simulation studies on two chemical processes — a binary distillation column and the Tennessee Eastman Challenge Process. We show why it is generally not a good idea to use a small control horizon to reduce the on-line computational time. The effectiveness of the Nonlinear Model Predictive Control algorithm recently proposed by Zheng in resolving these issues is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. T. Biegler and J. B. Rawlings. Optimization approaches to nonlinear model pre­dictive control. In Conf. Chemical Process Control (CPC-IV), pages 543–571, South Padre Island, Texas, 1991. CACHE-AIChE.

    Google Scholar 

  2. H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica,1997. In press.

    Google Scholar 

  3. C. R. Cutler and B. L. Ramaker. Dynamic matrix control — A computer control algorithm. In Joint Automatic Control Conf., San Francisco, California 1980.

    Google Scholar 

  4. J. J. Downs and E. F. Vogel. A plant-wide industrial-process control problem. Com­puters and Chemical Engineering, 17(3):245–255, 1993.

    Article  Google Scholar 

  5. J. W. Eaton and J. B. Rawlings. Feedback control of nonlinear processes using on-line optimization techniques. Comp. and Chem. Eng., 14:469–479, 1990.

    Article  Google Scholar 

  6. C. E. García. Quadratic dynamic matrix control of nonlinear processes. An appli­cation to a batch reactor process. In AIChE Annual Meeting,San Francisco, CA, 1984.

    Google Scholar 

  7. S. Jang, B. Joseph, and H. Mukai. On-line optimization of constrained multivariable chemical processes. AIChE Journal, 33:26–42, 1987.

    Article  Google Scholar 

  8. S. S. Keerthi and E. G. Gilbert. Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approxima­tions. Journal of Optimization Theory and Applications, 57(2):265–293, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. H. Lee and B. Cooley. Robust model predictive control of multi-variable systems using input-output models with stochastic parameters. In Proceedings of American Control Conf., Seattle, WA, 1995.

    Google Scholar 

  10. J. H. Lee and N. L. Ricker. Extended Kalman filter based on nonlinear model pre­dictive control. Ind. Eng. Chem. Res., 33:1530–1541, 1994.

    Article  Google Scholar 

  11. D. Q. Mayne. Nonlinear model predictive control: An assessment. In CPC V, Lake Tahoe, CA, 1996.

    Google Scholar 

  12. D. Q. Mayne. Nonlinear model predictive control: Challenges and opporunities. In F. Allgower and A. Zheng, editors, International Symposium on the Assessment and Future Research Directions of Nonlinear Model Predictive Control, Ascona, Switzer­land, 1998.

    Google Scholar 

  13. H. Michalska and D. Mayne. Robust receding horizon control of constrained nonlin­ear systems. IEEE Trans. Aut. Control, 38(11):1623–1633, November 1993.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Morari. Robust stability of systems with integral control. IEEE Trans. Autom. Control, 30:574–577, Jun 1985.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Morari and N. L. Ricker. Predictive Methods Toolbox for Matlab. Test Version, 1993.

    Google Scholar 

  16. A. M. Morshedi. Universal dynamic matrix control. In Proceedings of CPC III,New York, 1986.

    Google Scholar 

  17. G. D. Nicolao, L. Magni, and R. Scattolini. Stability and robustness of nonlinear receding horizon control. In F. Allgower and A. Zheng, editors, International Sym­posium on Nonlinear Model Predictive Control: Assessment and Future Directions, Ascona, Switzerland, 1998.

    Google Scholar 

  18. J. B. Rawlings and K. R. Muske. The stability of constrained receding horizon con­trol. IEEE Trans. Aut. Control, 38(10):1512–1516, October 1993.

    Article  MathSciNet  MATH  Google Scholar 

  19. N. L. Ricker. Decentralized control of the tennessee eastman challenge process. Jour­nal of Process Control, 6:205–221, 1996.

    Article  Google Scholar 

  20. S. Skogestad and I. Postlethwaite. Multivariable feedback control. John Wiley & Sons, 1996.

    Google Scholar 

  21. T. H. Yang and E. Polak. Moving horizon control of nonlinear systems with in­put saturation, disturbances and plant uncertainty. Int. J. Control, 58(4):875–903, September 1993.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Zheng. A computationally efficient nonlinear model predictive control algorithm. In Proceedings of American Control Conf., Albuquerque, NM, 1997.

    Google Scholar 

  23. A. Zheng. A computationally efficient nonlinear model predictive control algorithm with guaranteed stability. In NATO-ASI, Antalya, Turkey, 1997.

    Google Scholar 

  24. A. Zheng. Nonlinear model predictive control of the tennessee eastman process. In Proceedings of American Control Conf., Philadelphia, PA, 1998.

    Google Scholar 

  25. A. Zheng, V. Balakrishnan, and M. Morari. Constrained stabilization of discrete-time systems. International Journal of Robust and Nonlinear Control, 5(5):461–485, Aug. 1995.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Zheng, A. (2000). Some Practical Issues and Possible Solutions for Nonlinear Model Predictive Control. In: Allgöwer, F., Zheng, A. (eds) Nonlinear Model Predictive Control. Progress in Systems and Control Theory, vol 26. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8407-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8407-5_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9554-5

  • Online ISBN: 978-3-0348-8407-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics