Skip to main content

Modeling and Identification for NonlinearModel Predictive Control: Requirements,Current Status and Future Research Needs

  • Conference paper
Nonlinear Model Predictive Control

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 26))

Abstract

In this paper, we present a critical look into modeling/identification strategies for nonlinear model predictive control applications. General modeling requirements for nonlinear model predictive control applications are discussed. Then, strengths and weaknesses of fundamental modeling as well as various empirical modeling methods are examined in light of these requirements. A promising new paradigm of nonlinear subspace identification is put forth. We conclude the paper with a discussion of future research needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Aling, R. L. Kosut, A. Emami-Naeini, and J. L. Ebert. Nonlinear model reduction with application to rapid thermal processing. In Proceedings of the 35th Conference on Decision and Control,pages 4305–4310, Kobe, Japan, 1996.

    Chapter  Google Scholar 

  2. L. S. Balasubramhanya and F. J. Doyle III. Nonlinear control of a high purity distillation column using a traveling wave model. AIChE Journal, 43:703–714, 1997.

    Article  Google Scholar 

  3. B. W. Bequette. Nonlinear control of chemical processes: A review. Ind. Eng. Chem. Res., 30:1391–1413, 1991.

    Article  Google Scholar 

  4. S. A. Billings. Identification of nonlinear systems-a survey. In IEE Proc., volume 127, Pt. D-6, pages 272–285, 1980.

    Google Scholar 

  5. S. A. Billings and W. S. F. Voon. A prediction-error and stepwise-regression estimation algorithm for non-linear systems. Int. J. Control, 44(3):803–822, 1986.

    Article  MATH  Google Scholar 

  6. T. Bohlin. A case study of grey box identification. Automatica,30(2):307–318, 1994.

    Article  MATH  Google Scholar 

  7. Boyd S. and Chua L. O. Fading memory and the problem of approximating nonlinear operators with volterra series. IEEE Tras. Circuits and Systems, 32:1150–1161, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Chikkula, J. H. Lee, and B. Ogunnaike. Dynamically scheduled model predictive control of nonlinear processes using hinging hyperplane models. AIChE Journal, to appear, 1998.

    Google Scholar 

  9. Y. Chikkula, J. H. Lee, and B. Ogunnaike. Robust model predictive control of nonlinear systems using input-output models. In Proceedings of American Control Conf., pages 2205–2209, Seattle, WA, 1995.

    Google Scholar 

  10. B. Cooley and J. H. Lee. Control-relevant experiment design for multivariable systems. Automatica, under review, 1997.

    Google Scholar 

  11. B. Cooley and J. H. Lee. Integrated identification and robust control. Proceedings of IFAC ADCHEM Conference Banff, Canada, to appear in Journal of Process Control 1997.

    Google Scholar 

  12. A. K. Datta, J. H. Lee, and A. Krishnagopalan. Reducing batch-to-batch variability of pulp qulaity through model-based estimation. Pulp and Paper Canada, 98(4):4649, 1997.

    Google Scholar 

  13. F. De Bruyne, B. D. O Anderson, M. Gevers and N. Linard. Robust model predictive control of nonlinear systems using input-output models. In Proceedings of American Control Conf., pages 2205–2209, Seattle, WA, 1995.

    Google Scholar 

  14. D. Dong and T. J. McAvoy. Nonlinear principal component analysis — based on principal curves and neural networks. Computers and Chemical Engineering, 20(1):65–78, 1996.

    Article  Google Scholar 

  15. A. A. Feldbaum. Optimal Control Theory. Academic Press, New York, NY, 1965.

    Google Scholar 

  16. C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: theory and practice — a survey. Automatica, 25(3):335–348, 1989.

    Article  MATH  Google Scholar 

  17. C.E. Garcia. Quadratic dynamic matrix control of nonlinear processes-an application to a batch reaction process. In AIChE Annual Meeting, 1984.

    Google Scholar 

  18. M. Gevers. Connecting identification and robust control: a new challenge. In 9th IFAC Symposium on Identification and System Parameter Estimation, Budapest, Vol 1. Pp. 1–10, 1991.

    Google Scholar 

  19. E. Hernandez and Y. Arkun. Control of nonlinear systems using polynomial ARMA models. AICHE Journal, 39(3):446–460, 1993.

    Article  Google Scholar 

  20. T. R. Holcomb and M. Morari. PLS/neural network. Computers and Chemical Engineering, 16(4):393–411, 1992.

    Article  Google Scholar 

  21. A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, New York, NY, 1970.

    Google Scholar 

  22. T. A. Johansen and B. A. Foss. Identification of nonlinear system structure and parameters using regime decomposition. Automatica, 31(2):321–326, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. C. Kantor. A finite dimensional nonlinear observer for an exothermic stirred-tank reactor. Chem. Eng. Sci., 44(7):1503–1510, 1989.

    Article  Google Scholar 

  24. M. A. Kramer. Nonlinear principal component analysis using autoassociative neural networks. AIChE J., 37(2):233–243, 1991.

    Article  Google Scholar 

  25. J. H. Lee and N. L. Ricker. Extended Kalman filter based model predictive control. Ind. Eng. Chem. Res., pages 1530–1541, 1994.

    Google Scholar 

  26. L. Ljung. System Identification: Theory for the User. Prentice-Hall Information and System Sciences Series, Englewood Cliffs, NY, 1987.

    Google Scholar 

  27. B. Maner and F. J. Doyle III. Simulated polymerization reactor control using autoregressive plus volterra-based mpc. AIChE Journal, 43:1763–1784, 1997.

    Article  Google Scholar 

  28. W. Marquart. Wave propagation in counter-current separtion processes and its significance to model reduction. Automatisierungstechnik, 35(4):156–162, 1987.

    Google Scholar 

  29. M. Morari and J. H. Lee. Model predictive control: Past, present and future. presented at PSE97/ESCAPE5,Computers and Chemical Engineering., page to appear, 1997.

    Google Scholar 

  30. R. K. Pearson. Nonlinear input/output modeling. Journal of Process Control, 5(4):197–211, 1995.

    Article  Google Scholar 

  31. R. K. Pearson and B. A. Ogunnaike. Nonlinear Process Control, Henson, M.A.Seborg, D. E. (eds.), chapter Nonlinear Process Identification. Prentice Hall PTR, 1997.

    Google Scholar 

  32. R. K. Pearson, B. A. Ogunnaike, and F. J. Doyle III. Identification of structurally constrained second-order volterra models. IEEE Trans. Signal Processing, 44:28372846, 1996.

    Google Scholar 

  33. R. K. Pearson, T. A. Ogunnaike, and F. J. Doyle III. Identification of nonlinear input/output models using non-gaussian input sequences. In Proc. American Control Conference, pages 1465–1469, San Francisco, 1993.

    Google Scholar 

  34. M. B. Priestley. Non-linear and Non-Stationary Time Series Analysis. Academic Press, San Diego, CA, 1988.

    Google Scholar 

  35. S. J. Qin and T. J. McAvoy. Nonlinear PLS modeling using neural networks. Computers and Chemical Engineering, 16(4):379–391, 1992.

    Article  Google Scholar 

  36. S. Joe Qin and T.A. Badgwell. An overview of industrial predictive control technology. In Chemical Process Control - V,Assessment and New Directions for Research, Tahoe City, CA, January 1996.

    Google Scholar 

  37. J. B. Rawlings, E. S. Meadows, and K. R. Muske. Nonlinear model predictive control: a tutorial and survey. In Proc. of ADCHEM, Kyoto, Japan, 1994.

    Google Scholar 

  38. C. Rhodes and M. Morari. Determining the model order of nonlinear input/output systems. In AIChE Journal, volume 44 (1), pages 151–163, 1998.

    Article  Google Scholar 

  39. N. L. Ricker. Use of biased least squares estimators for parameters in discrete time pulse responses. Industrial and Engineering Chemistry Research,27(2):343–350, 1988.

    Google Scholar 

  40. D. Robertson, J. H. Lee, and J. Rawlings. A moving horizon based approach for least squares state estimation. AIChE Journal, 42:2209–2224, 1996.

    Article  Google Scholar 

  41. D. G. Robertson and J. H. Lee. A constrained least squares formulation of state estimation. Journal of Process Control, 5(4):291–299, 1995.

    Article  Google Scholar 

  42. D. G. Robertson, S. A. Russel, J. H. Lee, and B. Ogunnaike. Control of a batch condensation polymerization reactor. In Proceedings of American Control Conf., pages 4453–4457, Seattle, WA, 1995.

    Google Scholar 

  43. S. A. Russel, P. Kesavan, J. H. Lee, and B. Ogunnaike. Recursive data-based prediction and control of product quality for batch and semi-batch processes applied to a Nylon 6,6 autoclave. 97’ AIChE Annual Meeting,Los Angeles, CA, AIChE Journal, submitted, 1998.

    Google Scholar 

  44. L. Sirovich. New Perspectives in Turbulence, Sirovich, L. (eds.), chapter Empirical Eigenfunctions and Low-Dimensional Systems. Springer-Verlag, 1991.

    Google Scholar 

  45. J. Sjoberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon’ et al. Nonlinear black-box modeling in system identification: a unified overview Automatica,31(12):1691–1724, 1995.

    Article  MathSciNet  Google Scholar 

  46. M. Soroush. Nonlinear state-observer design with application to reactors. Chemical Engineering Science, 39:387–404, 1993.

    Google Scholar 

  47. H. Tong. Non-linear Time Series. Oxford University Press, New York, 1990.

    MATH  Google Scholar 

  48. H. J. A. F Tulleken. Grey-box modeling and identification using physical knowledge and bayesian techniques. Automatica, 29(2):285–308, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  49. P. Van Overschee and B. de Moor. N4SID: Subspace algorithms for the identification of combined deterministic stochastic systems. Automatica, 30(1):75–93, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  50. R. J. Williams. Neural Networks for Control,Miller, W. T., Sutton, R. S., and Werbos, P. J. (eds.), chapter Adaptive State Representation and Estimation Using Recurrent Connectionist Networks. The MIT Press, Cambridge, MA, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Lee, J.H. (2000). Modeling and Identification for NonlinearModel Predictive Control: Requirements,Current Status and Future Research Needs. In: Allgöwer, F., Zheng, A. (eds) Nonlinear Model Predictive Control. Progress in Systems and Control Theory, vol 26. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8407-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8407-5_15

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9554-5

  • Online ISBN: 978-3-0348-8407-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics