Skip to main content

Stability and Robustness of Nonlinear Receding Horizon Control

  • Conference paper
Nonlinear Model Predictive Control

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 26))

Abstract

The main design strategies for ensuring stability and robustness of nonlinear RH (Receding-Horizon) control systems are critically surveyed. In particular, the following algorithms with guaranteed closed-loop stability of the equilibrium are considered: the zero-state terminal constraint, the dual-mode RH controller, the infinite-horizon closed-loop costing, the quasi-infinite method, and the contractive constraint. For each algorithm, we analyse and compare feasibility, performance, and implementation issues. For what concerns robustness analysis and design, we consider: monotonicity-based robustness, inverse optimality robustness margins, nonlinear H RH design, and a new nonlinear RH design with local H recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Alamir and G. Bornard. Stability of a truncated infinite constrained receding horizon scheme: the general discrete nonlinear case. Automatica,31(9):1353–1356, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Bitmead, M. Gevers, I. Petersen and R.J. Kaye. Monotonicity and stabilizability properties of solutions of the Riccati difference equation: Propositions, lemmas, theorems, fallacious conjectures and counterexamples. System & Control Letters, 5:309–315, 1985.

    MathSciNet  MATH  Google Scholar 

  3. R. Bitmead, M. Gevers, and V. Wertz. Adaptive Optimal Control: The Thinking Man’s GPC. Prentice Hall, 1990.

    Google Scholar 

  4. C. Chen and L. Shaw. On receding horizon feedback control. Automatica, 18(3):349–352, 1982.

    Article  MathSciNet  Google Scholar 

  5. H. Chen and F. Algöwer. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica,1998.

    Google Scholar 

  6. H. Chen and F. Allgöwer.,A quasi-infinite horizon nonlinear predictive control. In European Control Conference ‘87, 1997.

    Google Scholar 

  7. H. Chen, C. Scherer, and F. Allgöwer. A game theoretical approach to nonlinear robust receding horizon control of constrained systems. In American Control Conference ‘87, 1997.

    Google Scholar 

  8. M. Chen. Stability and Robustness Considerations in Nonlinear Model Predictive Control. PhD thesis, Stuttgarg, 1997.

    Google Scholar 

  9. L. Chisci and A. Lombardi. Dual receding horizon control with deadzone. In Proceeding of 3rd European Control Conference, 1995.

    Google Scholar 

  10. L. Chisci, A. Lombardi, and E. Mosca. Dual receding-horizon control of constrained discrete-time systems. European Journal of Control, 2:278–285, 1996.

    Article  MATH  Google Scholar 

  11. D. Chmielewski and V. Manousiouthakis.On constrained infinite-time linear quadratic optimal control. System &’ Control Letters, 29:121–129, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Danyang and L. Xuanhuang. Optimal state estimation without the requirement of a priori statistics information on the initial state. IEEE Trans. on Automatic Control, 39:2087–2091, 1994.

    Article  MATH  Google Scholar 

  13. G. De Nicolao. Cyclomonotonicity and stabilizability properties of solutions of the difference periodic Riccati equation. IEEE Trans. on Automatic Control, 37:14051410, 1992.

    Google Scholar 

  14. G. De Nicolao, L. Magni, and R. Scattolini. On the robustness of receding-horizon control with terminal constraints. IEEE Trans. Automatic Control, 41:451–453, 1996.

    Article  MATH  Google Scholar 

  15. G. De Nicolao, L. Magni, and R. Scattolini. Stabilizing nonlinear receding horizon control via a nonquadratic terminal penalty. In IMACS Multiconference CESA ‘86, pages Vol. 1, 185–187, 1996.

    Google Scholar 

  16. G. De Nicolao, L. Magni, and R. Scattolini. Stabilizing predictive control of nonlinear ARX models. Automatica, 33:1691–1697, 1997.

    Article  Google Scholar 

  17. G. De Nicolao, L. Magni, and R. Scattolini. Stabilizing receding-horizon control of nonlinear time-varying systems. IEEE Trans. on Automatic Control, 43:1030–1036, 1998.

    Article  MATH  Google Scholar 

  18. S. De Oliveira. Model Predictive Control (MPC) for Constrained Nonlinear Systems. PhD thesis, Institute of Technology, Pasadena, California, 1996.

    Google Scholar 

  19. E. G. Gilbert and K. T. Tan. Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Trans. on Automatic Control, 36:1008–1020, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Glad. Robustness of nonlinear state feedback — a survey. Automatica,23:425–435, 1987.

    Article  MATH  Google Scholar 

  21. S. Keerthi and E. Gilbert. Optimal, infinite-horizon feedback laws for a general class of constrained discrete-time systems. J. Optimiz. Th. Appl., 57:265–293, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Kwon and A. Pearson. On feedback stabilization of time-varying discrete-linear systems. IEEE Trans. on Automatic Control, 23:479–481, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Magni. Nonlinear Receding Horizon Control: Theory and Application. PhD thesis, Dipartimento di Informatica e Sistemistica, Università degli Studi di Pavia, 1994.

    Google Scholar 

  24. L. Magni, G. Bastin, and V. Wertz. Multivariable nonlinear predictive control of cement mills IEEE Trans. on Control and Systems Technology,1998. (to appear).

    Google Scholar 

  25. L. Magni, H. Nijmaijer, and A. van der Schaft. A receding-horizon approach to the nonlinear H control problem. Submitted to Automatica.

    Google Scholar 

  26. L. Magni and R. Sepulchre. Stability margins of nonlinear receding horizon control via inverse optimality. System Control Letters, 32:241–245, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Mayne and H. Michalska. Receding horizon control of nonlinear systems. IEEE Trans. on automatic Control, 35:814–824, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Meadows, M. Henson, J. Eaton, and J. Rawlings. Receding horizon control and discontinuous state feedback stabilization. Int. J. Control, 62:1217–1229, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Michalska and D. Mayne. Robust receding horizon control of constrained nonlinear systems. IEEE Trans on Automatic Control, 38:1512–1516, 1993.

    Article  MathSciNet  Google Scholar 

  30. H. Michalska. A new formulation of receding horizon stabilizing control without terminal constraint on the state. European Journal of Control, 3:2–14, 1997.

    Article  MATH  Google Scholar 

  31. M. Morari and S.L. de Oliveira. Contractive model predictive control for constrained nonlinear systems. IEEE Trans on Automatic Control, 1998, in press.

    Google Scholar 

  32. T. Parisini and R. Zoppoli. A receding-horizon regulator for nonlinear systems and a neural approximation. Automatica, 31:1443–1451, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  33. T. Parisini, M. Sanguineti, and R. Zoppoli. Nonlinear stabilization by receding-horizon neural regulators. In Int. J. Control, 70:341–362, 1998.

    Google Scholar 

  34. J. Rawlings and K. Muske. The stability of constrained receding horizon control. IEEE Trans on Automatic Control, 38:1512–1516, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  35. P. Scokaert and J. Rawlings. Infinite horizon linear quadratic control with constraints. In IFAC 13th Triennal World Congress, pages vol.M 109–114, 1996.

    Google Scholar 

  36. P. Scokaert, J. Rawlings, and E. Meadows. Discrete-time stability with perturbations: Application to model predictive control. Automatica, 33:463–470, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Sepulchre, M. Jankovic, and P. Kokotovic. Constructive Nonlinear Control. Springer-Verlag, 1996.

    Google Scholar 

  38. A. Stoorvogel and A. Weeren. The discrete-time Riccati equation related to the H,,,, control problem. IEEE Trans. on Automatic Control, 39:686–691, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Sznaier and M. Damborg. Suboptimal control of linear systems with state and control inequality constraints. In Proceedings of the 26th Conference on Decision and Control, pages 761–762, 1987.

    Google Scholar 

  40. M. Sznaier and M. Damborg. Control of constrained discrete time linear systems using quantized controls. Automatica, 25:623–628, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Sznaier and M. Damborg. Heuristically enhanced feedback control of constrained discrete-time linear systems. Automatica, 26:521–532, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Vidyasagar. Nonlinear System Theory. Englewood Cliffs, NJ, Prentice-Hall, 2nd edition, 1993.

    Google Scholar 

  43. T. Yang and E. Polak. Moving horizon control of nonlinear systems with input saturation, disturbances and plant uncertainty. Int. J. Control, 58:875–903, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Zheng. Model predictive control: Is QP necessary? In AIChE Annual Meeting, 1996.

    Google Scholar 

  45. A. Zheng. A computationally efficient nonlinear model predictive control algorithm. In Proceedings of American Control Conference, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

De Nicolao, G., Magni, L., Scattolini, R. (2000). Stability and Robustness of Nonlinear Receding Horizon Control. In: Allgöwer, F., Zheng, A. (eds) Nonlinear Model Predictive Control. Progress in Systems and Control Theory, vol 26. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8407-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8407-5_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9554-5

  • Online ISBN: 978-3-0348-8407-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics