Skip to main content

Salutary effect of autoimmune T cells after central nervous system injury

  • Chapter
Inflammation and Stroke

Part of the book series: Progress in Inflammation Research ((PIR))

  • 121 Accesses

Abstract

The interaction between the central nervous system (CNS) and the immune system is unique, partly because it is characterized by “immune privilege”, involving restriction of local immune responses within the CNS. This phenomenon is probably an evolutionary adaptation developed to protect the intricate neuronal networks of the CNS from potentially disruptive incursion by the immune system [1–3]. An early definition of immune privilege was based on the assumption that the immune system ignores the CNS. This concept of immune ignorance was supported by the poor ability of the CNS to reject allografts, i.e. tissue grafts from the same species but from a different major histocompatibility complex (MHC) haplotype. Immune privilege was thought to be maintained by the harboring of antigens within the CNS and the inability of immune cells to enter the CNS under normal physiological conditions. Any entry of leukocytes was viewed as evidence of pathology [4–8]. Several observations have indicated that the CNS is accessible to immune cells, and that immune privilege is the result of an active barrier, or of several mechanisms collectively endowing the CNS with unique immune characteristics [9–13]. It thus appears that protection of the CNS from pathogen invasion has been achieved at the cost of forfeiting some of the advantages normally bestowed on damaged tissues by the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lotan M, Schwartz M (1994) Cross talk between the immune system and the nervous system in response to injury: Implications for regeneration. FASEB J 8: 1026–1033

    PubMed  CAS  Google Scholar 

  2. Schwartz M, Yoles E, Levin LA (1999) “Axogenic” and “somagenic” neurodegenerative diseases: Definitions and therapeutic implications. Mol Med Today 5: 470–473

    Article  PubMed  CAS  Google Scholar 

  3. Schwartz M (2000) Autoimmune involvement in CNS trauma is beneficial if well con-trolled. Prog Brain Res 128: 259–263

    Article  PubMed  CAS  Google Scholar 

  4. Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: A new view. Immunol Today 13: 507–512

    Article  PubMed  CAS  Google Scholar 

  5. Cserr HF, Harling-Berg CJ, Knopf PM (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 2: 269–276

    Article  PubMed  CAS  Google Scholar 

  6. Griffin D, Levine B, Tyor W, Ubol S, Despres P (1997) The role of antibody in recovery from alphavirus encephalitis. Immunol Rev 159: 155–161

    Article  PubMed  CAS  Google Scholar 

  7. Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28: 254–260

    Article  PubMed  CAS  Google Scholar 

  8. Shrikant P, Benveniste EN (1996) The central nervous system as an immunocompetent organ: role of glial cells in antigen presentation. J Immunol 157: 1819–1822

    PubMed  CAS  Google Scholar 

  9. Bell MD, Taub DD, Perry VH (1996) Overriding the brain’s intrinsic resistance to leukocyte recruitment with intraparenchymal injections of recombinant chemokines. Neuroscience 74: 283–292

    Article  PubMed  CAS  Google Scholar 

  10. Goverman J, Brabb T, Paez A, Harrington C, von Dassow P (1997) Initiation and regulation of CNS autoimmunity. Crit Rev Immunol 17: 469–480

    PubMed  CAS  Google Scholar 

  11. Matyszak MK, Perry VH (1995) Demyelination in the central nervous system following a delayed-type hypersensitivity response to bacillus Calmette-Guerin. Neuroscience 64: 967–977

    Article  PubMed  CAS  Google Scholar 

  12. Matyszak MK, Townsend MJ, Perry VH (1997) Ultrastructural studies of an immune-mediated inflammatory response in the CNS parenchyma directed against a non-CNS antigen. Neuroscience 78: 549–560

    Article  PubMed  CAS  Google Scholar 

  13. Perry VH, Brown MC, Gordon S (1987) The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med 165: 1218–1223

    Article  PubMed  CAS  Google Scholar 

  14. Moalem G, Monsonego A, Shani Y, Cohen IR, Schwartz M (1999) Differential T cell response in central and peripheral nerve injury: connection with immune privilege. FASEB J 13: 1207–1217

    PubMed  CAS  Google Scholar 

  15. Flugel A, Schwaiger FW, Neumann H, Medana I, Willem M, Wekerle H, Kreutzberg GW, Graeber MB (2000) Neuronal FasL induces cell death of encephalitogenic T lymphocytes. Brain Pathol 10: 353–364

    Article  PubMed  CAS  Google Scholar 

  16. Hirschberg DL, Moalem G, He J, Mor F, Cohen IR, Schwartz M (1998) Accumulation of passively transferred primed T cells independently of their antigen specificity following central nervous system trauma. J Neuroimmunol 89: 88–96

    Article  PubMed  CAS  Google Scholar 

  17. Schwartz M, Cohen IR, Lazarov-Spiegler O, Moalem G, Yoles E (1999) The remedy may lie in ourselves: Prospects for immune cell therapy in central nervous system protection and repair. J Mol Med 77: 713–717

    Article  PubMed  CAS  Google Scholar 

  18. Yoles E, Schwartz M (1998) Degeneration of spared axons following partial white matter lesion: Implications for optic nerve neuropathies. Exp Neurol 153: 1–7

    Article  PubMed  CAS  Google Scholar 

  19. Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5: 49–55

    Article  PubMed  CAS  Google Scholar 

  20. Moalem G, Yoles E, Leibowitz-Amit R, Muller-Gilor S, Mor F, Cohen IR, Schwartz M (2000) Autoimmune T cells retard the loss of function in injured rat optic nerves. J Neuroimmunol 106: 189–197

    Article  PubMed  CAS  Google Scholar 

  21. Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P, Cohen IR, Schwartz M (2000) Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 15: 331–345

    Article  PubMed  CAS  Google Scholar 

  22. Hauben E, Nevo U, Yoles E, Moalem G, Agranov E, Mor F, Akselrod S, Neeman M, Cohen IR, Schwartz M (2000) Autoimmune T cells as potential neuroprotective therapy for spinal cord injury. Lancet 355: 286–287

    Article  PubMed  CAS  Google Scholar 

  23. Hauben E, Butovsky O, Nevo U, Yoles E, Moalem G, Agranov E, Mor F, Leibowitz-Amit R, Pevsner S, Akselrod S et al (2000) Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J Neurosci 20: 6421–6430

    PubMed  CAS  Google Scholar 

  24. Nevo U, Hauben U, Yoles E, Agranov E, Akselrod S, Schwartz M, Neeman M (2001) Diffusion anisotropy MRI for quantitative assessment of recovery in injured rat spinal cord. Magn Reson Med 45: 1–9

    Article  PubMed  CAS  Google Scholar 

  25. Butovsky O, Hauben E, Schwartz M (2001) Morphological aspects of spinal cord autoimmune neuroprotection: Colocalization of T cells with B7.2(CD86) and prevention of cyst formation. FASEB J 15: 1065–1067

    PubMed  CAS  Google Scholar 

  26. Fisher J, Levkovitch-Verbin H, Schori H, Yoles E, Butovsky O, Kay JF, Ben-Nun A, Schwartz M (2001) Vaccination for neuroprotection in the mouse optic nerve: Implications for optic neuropathies. J Neurosci 21: 136–142

    PubMed  CAS  Google Scholar 

  27. Hauben E, Agranov E, Gothilf A, Nevo U, Cohen A, Smirnov I, Steinman L, Schwartz M (2001) Vaccination after spinal cord injury prevents complete paralysis: Autoimmunity without risk of autoimmune disease. J Clin Invest; in press

    Google Scholar 

  28. Besser M, Wank R (1999) Cutting edge: Clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Th1/Th2-polarized expression of their receptors. J Immunol 162: 6303–6306

    PubMed  CAS  Google Scholar 

  29. Ehrhard PB, Erb P, Graumann U, Otten U (1993) Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proc Natl Acad Sci USA 90: 10984–10988

    Article  PubMed  CAS  Google Scholar 

  30. Heese K, Hock C, Otten U (1998) Inflammatory signals induce neurotrophin expression in human microglial cells. J Neurochem 70: 699–707

    Article  PubMed  CAS  Google Scholar 

  31. Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, Kolbeck R, Hoppe E, Oropeza-Wekerle RL, Bartke I et al (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189: 865–870

    Article  PubMed  CAS  Google Scholar 

  32. Artis D, Humphreys NE, Bancroft AJ, Rothwell NJ, Potten CS, Grencis RK (1999) Tumor necrosis factor alpha is a critical component of interleukin 13-mediated protective T helper cell type 2 responses during helminth infection. J Exp Med 190:953–962

    Article  PubMed  CAS  Google Scholar 

  33. Bethea JR, Castro M, Keane RW, Lee TT, Dietrich WD, Yezierski RP (1998) Traumatic spinal cord injury induces nuclear factor-kappaB activation. J Neurosci 18: 3251–3260

    PubMed  CAS  Google Scholar 

  34. Loddick SA, Rothwell NJ (1999) Mechanisms of tumor necrosis factor alpha action on neurodegeneration: interaction with insulin-like growth factor-1. Proc Natl Acad Sci USA 96: 9449–9451

    Article  PubMed  CAS  Google Scholar 

  35. Blesch A, Grill RJ, Tuszynski MH (1998) Neurotrophin gene therapy in CNS models of trauma and degeneration. Prog Brain Res 117: 473–484

    Article  PubMed  CAS  Google Scholar 

  36. Bregman BS, McAtee M, Dai HN, Kuhn PL (1997) Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 148: 475–494

    Article  PubMed  CAS  Google Scholar 

  37. Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390: 680–683

    PubMed  CAS  Google Scholar 

  38. Yoles E, Hauben E, Palgi O, Agranov E, Gothilf A, Cohen A, Kuchroo VK, Cohen IR, Weiner H, Schwartz M (2001) Protective autoimmunity is a physiological response to CNS trauma. J Neurosci 21: 3740–3748

    PubMed  CAS  Google Scholar 

  39. Yoles E, Friedmann I, Barouch R, Shani Y, Schwartz M (2001) Self-protective mecha-nism awakened by glutamate in retinal ganglion cells. J Neurotrauma 18: 339–349

    Article  PubMed  CAS  Google Scholar 

  40. Gennarelli TA (1993) Mechanisms of brain injury. J Emerg Med 1 (Suppl 1): 5–11

    Google Scholar 

  41. Mukhin AG, Ivanova SA, Knoblach SM, Faden AI (1997) New in vitro model of traumatic neuronal injury: evaluation of secondary injury and glutamate receptor-mediated neurotoxicity. J Neurotrauma 14: 651–663

    Article  PubMed  CAS  Google Scholar 

  42. Ikonomidou C, Qin Qin Y, Labruyere J, Olney JW (1996) Motor neuron degeneration induced by excitotoxin agonists has features in common with those seen in the SOD-1 transgenic mouse model of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 55: 211–224

    Article  PubMed  CAS  Google Scholar 

  43. Yudkoff M, Daikhin Y, Grunstein L, Nissim I, Stern J, Pleasure D, Nissim I (1996) Astrocyte leucine metabolism: significance of branched-chain amino acid transamination. J Neurochem 66: 378–385

    Article  PubMed  CAS  Google Scholar 

  44. Yudkoff M, Daikhin Y, Nissim I, Grunstein R, Nissim I (1997) Effects of ketone bodies on astrocyte amino acid metabolism. J Neurochem 69: 682–692

    Article  PubMed  CAS  Google Scholar 

  45. Gritti A, Rosati B, Lecchi M, Vescovi AL, Wanke E (2000) Excitable properties in astrocytes derived from human embryonic CNS stem cells. Eur J Neurosci 12: 3549–3459

    Article  PubMed  CAS  Google Scholar 

  46. Schwartz M, Kipnis J (2001) Protective autoimmunity: regulation and prospects for vaccination after brain and spinal cord injuries. Trends Mol Med 7: 252–258

    Article  PubMed  CAS  Google Scholar 

  47. Kipnis J, Yoles E, Schori H, Hauben E, Shaked I, Schwartz M (2001) Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J Neurosci 21: 4564–4571

    PubMed  CAS  Google Scholar 

  48. Kipnis J, Yoles E, Porat Z, Cohen A, Mor F, Sela M, Cohen IR, Schwartz M (2000) T cell immunity to Copolymer-1 confers neuroprotection on the damaged optic nerve: Possible therapy for optic neuropathies. Proc Natl Acad Sci USA 97: 7446–7451

    Article  PubMed  CAS  Google Scholar 

  49. Schori H, Kipnis J, Yoles E, Wolde Mussie E, Ruiz G, Wheeler LA, Schwartz M (2001) Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: Implications for glaucoma. Proc Nat Acad Sci USA 98: 3398–3403

    Article  PubMed  CAS  Google Scholar 

  50. Burnet FM (1971) “Self-recognition” in colonial marine forms and flowering plants in relation to the evolution of immunity. Nature 232: 230–235

    Article  PubMed  CAS  Google Scholar 

  51. Bretcher P, Cohn M (1970) A theory of self-nonself discrimination. Science 169: 1042–1049

    Article  Google Scholar 

  52. Cohen IR (1988) The self, the world and autoimmunity. Sci Am 258: 52–60

    Article  PubMed  CAS  Google Scholar 

  53. Jameson SC, Hogquist KA, Bevan MJ (1995) Positive selection of thymocytes. Annu Rev Immunol 13: 93–126

    Article  PubMed  CAS  Google Scholar 

  54. Janeway CA Jr (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13: 11–16

    Article  PubMed  CAS  Google Scholar 

  55. Jerne NK (1984) Idiotypic networks and other preconceived ideas. Immunol Rev 79: 5–24

    Article  PubMed  CAS  Google Scholar 

  56. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Schwartz, M. (2001). Salutary effect of autoimmune T cells after central nervous system injury. In: Feuerstein, G.Z. (eds) Inflammation and Stroke. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8297-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8297-2_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9508-8

  • Online ISBN: 978-3-0348-8297-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics