Skip to main content

Wissensstand zu den Auswirkungen spezieller gentechnisch vermittelter Eigenschaften

  • Chapter
Transgene Nutzpflanzen

Zusammenfassung

Ein hoher Prozentsatz der Intensivackerkulturen wird mit Herbiziden behandelt. Der Vergleich mit den USA zeigt, dass der Herbizideinsatz in Deutschland sehr ausgeprägt ist (s. Tab. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ammann, K. 2000. Vorstellung des ESF (European Science Foundation)-Programmes: Bewertung möglicher Auswirkungen transgener Pflanzen. Bmb+f Statusseminar „Biologische Sicherheitsforschung bei Freilandversuchen mit transgenen Organismen und anbaubegleitendes Monitoring“, Braunschweig

    Google Scholar 

  • Anonym, 1996. Ein Unkraut, das nicht vergeht. Süddeutsche Zeitung 1.8.1996, 18

    Google Scholar 

  • Anonym, 2000. Triple-resistant canola weeds. Trends in Plant Science 5(5): 189

    Google Scholar 

  • Auerswald K. 1994. Auswirkungen des Anbaus herbizidresistenter Kulturpflanzen auf das Ausmaß der Bodenerosion und der Pestizidabschwemmung. In: Daele W. van den et al. (eds.) Verfahren zur Technikfolgenabschätzung des Anbaus von Kulturpflanzen mit gentechnisch erzeugter Herbizidresistenz Heft 8, WZB Berlin, 52 S.

    Google Scholar 

  • Bachmann S, Schmalenberger A, Tebbe CC. 2000. Biologische Begleitforschung zu den bodenmikrobiologischen Auswirkungen von Fruchtfolgen mit transgenen, herbizidresistenten Nutzpflanzen. Proceedings zum BMBF-Statusseminar „Biologische Sicherheitsforschung bei Freilandversuchen mit transgenen Organismen und anbaubegleitendes Monitoring“ 29-30.6 1999, Braunschweig: 129–134

    Google Scholar 

  • Bechmann A, Gustedt E, Preising A, Thomas F. 1987. Landbau-Wende (Kurzfassung)-Vorschläge für eine neue Agrarpolitik-Ökologischer Anbau.-Zukunfts-Institut, Barsinghausen, 1–27

    Google Scholar 

  • Beusmann V. 1994. Betriebs-und volkswirtschaftliche Aspekte des Einsatzes herbizidresistenter Nutzpflanzen. In: Daele W. van den et al. (eds.) Verfahren zur Technikfolgenabschätzung des Anbaus von Kulturpflanzen mit gentechnisch erzeugter Herbizidresistenz Heft 15, WZB Berlin, 93 S.

    Google Scholar 

  • Böger P. 1994. Mögliche pflanzenphysiologische Veränderungen in herbizidresistenten und transgenen Pflanzen und durch den Kontakt mit Komplementärherbiziden. In: Daele W. van den et al. (eds.) Verfahren zur Technikfolgenabschätzung des Anbaus von Kulturpflanzen mit gentechnisch erzeugter Herbizidresistenz Heft 2, WZB Berlin, 161 S.

    Google Scholar 

  • Champolivier J, Gasquez J, Messean A, Richard-Molard M. 1999. Management of transgenic crops within the cropping system. BCPC Symposium Proceedings 72: Gene flow and agriculture: Relevance for transgenic crops, 233–240

    Google Scholar 

  • Cremer J. 1996. Zum derzeitigen Stand der Feldversuche mit Glufosinat-ammonium in glufosinat-verträglichen Kulturen. Z. PflKrankh. PflSchutz, Sonderheft XV: 173–179

    Google Scholar 

  • Deutscher Bundestag (ed.) 1987. Zur Sache: Themen parlamentarischer Beratung: Chancen und Risiken der Gentechnologie 1/87, Bericht der Enquete-Kommission „Chancen und Risiken der Gentechnologie“ des 10. Deutschen Bundestages, 405 S

    Google Scholar 

  • Dewar A. 2000. Bio-Diversity Implications, at ESF/AIGM (European Science Foundation) The wider environmental implications of genetically modified plants. Workshop, January 2000, Cambridge, UK

    Google Scholar 

  • Diercks R, Heitefiiss R. 1990. (eds.) Integrierter Landbau. Systeme umweltbewußter Pflanzenproduktion, München, 440. S.

    Google Scholar 

  • Dorn E, Görlitz G, Heusel R, Stumpf K, 1992. Verhalten von Glufosinat-Ammonium in der Umwelt-Abbau im und Einfluß auf das Ökosystem. Z PflKrankh. PflSchutz, Sonderheft XIII:459–468

    Google Scholar 

  • Fröhlich G. (ed.) 1991. Phytopathologie und Pflanzenschutz. UTB Wörterbücher der Biologie, UTB 867, G Fischer, Stuttgart, 382 S.

    Google Scholar 

  • Garbe V, Sauermann W, Bötger H, Broschewitz B, Augustin B, Stelling D, Gleser HJ, Gehring K. 2000. Einsatzmöglichkeiten von Unkrautschadensschwellen in transgenem herbizidtoleranten Winterraps. Mitteilungen aus der Biologischen Bundesanstalt für Land-und Forstwirtschaft Berlin-Dahlem. 52. Deutsche Pflanzenschutztagung in Freising-Weihenstephan 9.-12.Oktober 2000, 376:155–156

    Google Scholar 

  • Goldburg R, Rissler J, Shand H, Hassebrook C, 1990. Biotechnology’s bitter harvest, herbicide-tolerant crops and the threat to sustainable agriculture. A report of the Biotechnology Working Group, 73 S.

    Google Scholar 

  • Goldburg RJ. 1992. Environmental concerns with the development of herbicide-tolerant plants. Weed Technology 6:647–652

    CAS  Google Scholar 

  • Gressel J. 1991. Why get resistant? It can be prevented or delayed. In: Caseley JC. et al. (eds.) Herbicide resistance in weeds and crops, Oxford, 1–25

    Google Scholar 

  • Gressel J, 1996. The potential roles for herbicide-resistant crops in world agriculture. In: Duke SO (ed.) Herbicide-resistant crops, New York, 231–250

    Google Scholar 

  • Heitefiiss R, Gerowitt B, Steinmann H-H. 1994. HR-Technik und integrierter Pflanzenschutz. In: Daele W. van den et al. (eds.) Verfahren zur Technikfolgenabschätzung des Anbaus von Kulturpflanzen mit gentechnisch erzeugter Herbizidresistenz Heft 13, WZB Berlin, 78 S.

    Google Scholar 

  • Herzfeld F, Görlitz B-D, Kiper M. 1985. Gentechnologie in der Landwirtschaft. Naturwissenschaften 72:582–590

    Article  Google Scholar 

  • Hirn G, Olbrich M. 1991. Landwirtschaft-Pestizide als Bestandteil einer industriellen Agrikultur. In: Ruhnau M, Altenburger R, Bödeker W. (eds.) Pestizid-Report, Göttingen, 41–84

    Google Scholar 

  • Hurle K. 1994. Mögliche Veränderungen in der landwirtschaftlichen Praxis durch die HR-Technik. In: Daele W. van den et al. (eds.) Verfahren zur Technikfolgenabschätzung des Anbaus von Kulturpflanzen mit gentechnisch erzeugter Herbizidresistenz Heft 12, WZB Berlin, 87 S.

    Google Scholar 

  • James C, Krattiger AF. 1996. Global review of the field testing and commercialisation of transgenic plants: 1986-1995-The first decade of crop biotechnology. ISAAA Briefs Nr. 1., Ithaca, N.Y., 31 S.

    Google Scholar 

  • James C. 1999. Preview. Global review of commercialized transgenic crops: 1999. ISAAA Briefs 12: Preview, Ithaca, N.Y., 8 S.

    Google Scholar 

  • Johnson B. 2000. Mai 4. E-mail listserve kammann@sgi.unibe.ch

    Google Scholar 

  • Jørgensen RB. 1999. Gene flow from oilseed rape (Brassica napus) to related species BCPC Symposium Proceedings 72: Gene flow and agriculture: Relevance for transgenic crops, 117–124

    Google Scholar 

  • Kahnt G. 1996. Alternativen im Landbau-Perspektiven integrierter und ökologischer Anbauverfahren. In: Linckh G. et al. (eds.). Nachhaltige Land-und Forstwirtschaft. Expertisen, Berlin, 187–213

    Google Scholar 

  • Körner H. 1990. Der Einfluß der Pflanzenschutzmittel auf die Faunenvielfalt der Agrarlandschaft (unter besonderer Berücksichtigung der Gliederfüßler der Oberfläche der Felder). Landwirtschaftliches Jahrbuch 67(4):375–496

    Google Scholar 

  • LeBaron HM. 1991. Distributions and seriousness of herbicide-resistant weed infestations worldwide. In: Caseley et al. (eds.) Herbicide resistance in weeds and crops, Oxford, 27–43

    Google Scholar 

  • Lutman P. 2000. Herbicide Tolerance: Agronomic Impact, at ESF/AIGM (European Science Foundation) The wider environmental implications of genetically modified plants. Workshop, January 2000, Cambridge, UK

    Google Scholar 

  • Mahn A 1996. Begleituntersuchungen des Landes Niedersachsen zum Freisetzungs-experiment der Firma AgrEvo von gentechnisch veränderten Herbizid-resistenten Kulturpflanzen, http://www.bioregion.de/fg/fg08/nlobeglf.html

  • Mahn E-G. 1994. Zu den Auswirkungen der Einführung Herbizidresistenter Kulturpflanzen auf Ökosysteme. In: Daele W. van den et al. (eds.) Verfahren zur Technikfolgenabschätzung des Anbaus von Kulturpflanzen mit gentechnisch erzeugter Herbizidresistenz Heft 10, WZB Berlin, 71 S.

    Google Scholar 

  • Metz PLJ, Stiekema WJ, Nap J-P. 1998. A transgene-centered approarch to the biosaftey of transgenic phosphinothricin-tolerant plants. Molecular Breeding 4:335–341.

    Article  CAS  Google Scholar 

  • Monsanto. 1998. Das Roundup Ready® Sojabohnen-System: Nachhaltigkeit und Herbizidresistenz. Monsanto (Deutschland) GmbH, Immermannstraße 3, 40210 Düsseldorf, 11 S.

    Google Scholar 

  • Norris CE, Simpson EC, Sweet JB, Thomas JE, 1999. Monitoring weediness and persistence of genetically modified oilseed rape(Brassica napus) in the UK. In: British Crop Protection Council (ed.) Proceedings No. 72, Gene Flow and Agriculture: Relevance for transgenic crops, 255–260

    Google Scholar 

  • Osteen C. 1993. Pesticide use and trends and issues in the United States. In: Pimentel D, Lehman H. (eds.) The pesticide question, New York, 307–336

    Google Scholar 

  • Pallutt B, Hommel B. 1998. Untersuchungen zur Bewertung von transgenem Glufosinat-tolerantem Raps und Mais für den integrierten Pflanzenschutz — Konzeption und zweijährige Ergebnisse. Mitt.a.d.Biol. Bundesanst. 357:125

    Google Scholar 

  • Pearsall D. SCIMAC — Ist Role in the Development of GM Crops in the UK. Proceedings zum BMBF-Statusseminar „Biologische Sicherheitsforschung bei Freilandversuchen mit transgenen Organismen und anbaubegleitendes Monitoring“ 29-30.6 1999, Braunschweig: 159–164

    Google Scholar 

  • Petersen J, Hurle K. 1998. Einführung von herbizidresistenten Sorten: Konsequenzen für die Unkrautbekämpfung.-Z. PflKrankh. PflSchutz, Sonderh. XV: 365–372.

    Google Scholar 

  • Pimentel D, Mc Laughlin L, Zepp A, Lakitan B, Kraus T, Kleinman P, Vancini F, Roach WJ, Graap E, Keeton W, Selig G. 1993. Environmental and economic impacts of reducing U.S. agricultural pesticide use. In: Pimentel D, Lehman H. (eds.) The pesticide question, New York, 223–278

    Google Scholar 

  • RKI (Robert Koch Institut) 2000. Liste der inverkehrgebrachten Produkte http://www.rki.de/GENTEC/INVERKEHR/INVKLISTE.htm

    Google Scholar 

  • Sandermann H, Ohnesorge FK. 1994. Nutzpflanzen mit künstlicher Herbizidresistenz: Verbessert sich die Rückstandssituation? In: Daele W. van den et al. (eds.) Verfahren zur Technikfolgenabschätzung des Anbaus von Kulturpflanzen mit gentechnisch erzeugter Herbizidresistenz Heft 6, WZB Berlin, 152 S.

    Google Scholar 

  • Schütte G. 1998. Risiken des Anbaus herbizidresistenter Pflanzen, In: Nutzung der Gentechnik im Agrarsektor des USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit, Studie im Auftrag des Umweltbundesamtes, UBA-Texte 47/98, 381–445

    Google Scholar 

  • Schütte G, 2000. Transgenic herbicide résistant plants. Mitteilungen aus dem Institut für Allgemeine Botanik Hamburg. Bd.28. http://www.gtz.de/biotech/document.htm

  • Springett JA, Gray RAJ, 1992. Effect of repeated low doses of biocides on the earthworm Aporrectodea caliginosa in laboratory culture. Biol. Soil. Biochem. 24(12): 1739–1744

    Article  CAS  Google Scholar 

  • SRU (Der Rat von Sachverständigen für Umweltfragen) 1996. Sondergutachten “Konzepte einer dauerhaft-umweltgerechten Nutzung ländlicher Räume” des Rates von Sachverständigen für Umweltfragen. Drucksache 13/4109: 127 S.

    Google Scholar 

  • Stelling D, Schulte M, Amann A. 2000. Strategien der Unkrautbekämpfung mit LIBERTY® in LIBERTYLINK® Mais. Mitteilungen aus der Biologischen Bundesanstalt für Land-und Forstwirtschaft Berlin-Dahlem. 52. Deutsche Pflanzenschutztagung in Freising-Weihenstephan 9.-12.Oktober 2000.376:154–155

    Google Scholar 

  • Thill, D.C. 1996. Managing the spread of herbicide resistance. In: Duke SO. (ed.) Herbicide-resistant crops, New York, 331–337

    Google Scholar 

  • Thompson CE, Squire G, Mackey GR. Bradshaw JE, Crawford J, Ramsay G. 1999. Regional patterns of gene flow and its consequence for GM oilseed rape. BCPC Symposium Proceedings 72: Gene flow and agriculture: Relevance for transgenic crops, 95–100

    Google Scholar 

  • Torgersen H, Seifert F. 1999. Austria: Precautionary Blockage of Agricultural Biotechnology. Report for the project „Safety Regulation of Transgenic Crops — Completing the Internal Market? (funded by DGXII RTD [ELSA]), ITA/OeAW, Wien

    Google Scholar 

  • UBA (Umweltbundesamt), 1999. Beitrag der Biotechnologie zu einer dauerhaft umweltgerechten Entwicklung. UBA-Texte 1/99, 90–98

    Google Scholar 

  • USDA (United States Department of Agriculture), 1999. Historical Database, http://www.aphis.usda.gov/bbep/bp"/>

    Google Scholar 

  • Vigouroux Y, Darmency, de Garambe TG, Richard-Molard M, 1999. Gene flow between sugar beet and weed beet. BCPC Symposium Proceedings 72: Gene flow and agriculture: Relevance for transgenic crops, 83–88

    Google Scholar 

  • Watkinson AR, Frecklton RP, Robinson RA, Sutherland WJ. 2000. Predictions of Biodiversity Response to Genetically Modified Herbicide-Tolerant Crops. Science 289:1554–1557

    Article  CAS  Google Scholar 

  • Westwood J, 1997. Growers endorse herbicide resistant crops, recognize need for responsible use. ISB News. http://www.nbiap.vt.edu

  • ZALF (Zentrum für Agrarlandschafts-und Landnutzungsforschung) e.V. 1998. Gutachten zu den ökologischen Auswirkungen der Einführung der Herbizidresistenz(HR)-Technik bei Raps und Mais, Müncheberg, 161 S.

    Google Scholar 

Literatur

  • Alstad DN, Andow DA. 1995. Managing the evolution of insect resistance to transgenic plants. Science 268:1894–1896

    Article  CAS  Google Scholar 

  • Ammann K. 2000. August 22. E-mail listserve kammann@sgi.unibe.ch

    Google Scholar 

  • Andow DA, Hutchinson W. 1998. Bt-corn resistance management. In: Mellon M, Rissler J. (eds.) Now or never: Serious new plans to save a natural pest control, 19–66

    Google Scholar 

  • Andow DA. 2000. Priorities for future monitoring. ESF/AIGM (European Science Foundation) The environmental implications of genetically modified plants with insect resistance genes. Workshop, September 2000, Bern, Switzerland

    Google Scholar 

  • Anonym 1994. Agro 212

    Google Scholar 

  • Arpaia S. 1996. Ecological impact of Bt-transgenic plants: 1. Assessing possible effects of CryIIIB toxin on honey bee (Apis mellifera L.) colonies. Journal of Genetics and Breedings 50:315–319.

    CAS  Google Scholar 

  • Bauer LS. 1995. Resistance: A threat to the insecticidal crystal proteins of Bacillus thuringiensis. Florida Entomologist 78:414–443

    Article  CAS  Google Scholar 

  • BBA (Biologische Bundesanstalt) 1999. http://www..bba.de/gentech/tab3.htm

    Google Scholar 

  • BBA 2000. Anträge zur Freisetzung von GVO in der EU: eingeführte Eigenschaften. http://www..bba.de

    Google Scholar 

  • Berenbaum MR. 2000. July 12. E-mail listserve kammann@sgi.unibe.ch

    Google Scholar 

  • Bigler F, Keller B, Keller M. 1997. Risikoforschung an gentechnisch verändertem Bt-Mais. In: Eidgenössische Forschungsgemeinschaft für Agrarökologie und Landbau (ed.) Medieninformation 11 http://www.admin.ch/sar/fal/mi/mit1197d.html

  • BMELF (Bundesministerium für Ernährung, Landwirtschaft und Forsten) 1995. (ed.) Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten der Bundesrepublik Deutschland. Bd. 37. Münster-Hiltrup

    Google Scholar 

  • Bouchie A. 2000. Bacillus identify crisis. Nature Biotechnolgy 18(8):813

    Google Scholar 

  • Bourguet D. 2000. Gene flow on Ostrinia nubilalis in France. Implication for the sustainability of Bt maize. ESF/AIGM (European Science Foundation) The environmental implications of genetically modified plants with insect resistance genes. Workshop, September 2000, Bern, Switzerland

    Google Scholar 

  • Bradley D, Harkey MA, Kim M-K, Biever KD, Bauer LS. 1995. The insecticidal CryIB crystal protein of Bacillus thuringiensis ssp. thuringiensis has dual specificity to coleopteran and lepidopteran larvae. Journal of Invertebrate Pathology 65:162–173

    Article  CAS  Google Scholar 

  • Brower LP, Zalucki MP. 1999. Bt-corn and its effects on Monarch butterflies: a note of caution. November 11. E-mail listserve kammann@sgi.unibe.ch

    Google Scholar 

  • Candolfi M, Ahl-Goy P, Reber B, Brown K. 2000. Novartis field study results on potential effects of Bt-corn on non-target arthropods. ESF/AIGM (European Science Foundation) The environmental implications of genetically modified plants with insect resistance genes. Workshop, September 2000, Bern, Switzerland

    Google Scholar 

  • Orecchio C, Stotzky G. 1998. Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis Subs, kurstaki bound to humic acids from soil. Soil. Biol. Biochem. 30(4):463–470

    Article  Google Scholar 

  • Daly J, Finegan J, Wilson L, Fitt G, Schellhorn N. 2000. Impact of Bt Cotton — Insect/Plant Interactions. ESF/AIGM (European Science Foundation) The environmental implications of genetically modified plants with insect resistance genes. Workshop, September 2000, Bern, Switzerland

    Google Scholar 

  • Deml R, Dettner K. 1998. Wirkungen Bacillus thuringiensis-toxin-produzierender Pflanzen auf Ziel-und Nichtzielorganismen — eine Standortbestimmung. Umweltbundesamt Texte 36/98, 120 S.

    Google Scholar 

  • Diercks R. 1984. Einsatz von Pflanzenbehandlungsmitteln und die dabei auftretenden Umweltprobleme. Materialien zur Umweltforschung. Der Rat von Sachverständigen für Umweltfragen. Stuttgart

    Google Scholar 

  • Dogan EB, Berry RE, Reed GL, Rossignol PA. 1996. Biological parameters of convergent lady beetle (Coleóptera: Coccinellidae) feeding an aphids (Homoptera: Aphididae) on transgenic potato. Journal of Economic Entomology 89:1105–1108

    Google Scholar 

  • EPA (Environmental Protection Agency) 1995. Bacillus thuringiensis CryIA(b)-endotoxin and the genetic material necessary for its production (Plasmid vector pCIB4431) in corn. 18 pp.

    Google Scholar 

  • Estruch JJ, Carozzi NB, Desai N, Duck NB, Warren GW. 1997. Transgenic plants: An emerging approach to pest control. Nature Biotechnology 15:137–141

    Article  CAS  Google Scholar 

  • Feldmann S. 2000. Zusammenfassende Darstellung der von den Bundesländern finanzierten Begleitforschung. Bmb+f Statusseminar „Biologische Sicherheitsforschung bei Freilandversuchen mit transgenen Organismen und anbaubegleitendes Monitoring“ Braunschweig 1999

    Google Scholar 

  • Ferro DN. 1993. Potential for resistance to Bacillus thuringiensis: Colorado Potato Beetle (Coleoptera: Chrysomelidae)-A model system. American Entomologist 39:38–44

    Google Scholar 

  • Flexner JL, Lighthart B, Croft BA. 1986. The effects of microbial pesticides on non-target, beneficial arthropods. Agriculture, Ecosystems and Environment 16:203–254

    Article  Google Scholar 

  • Fox J. 1996. Bt cotton infestations renew resistance concerns. Nature Biotechnology 14:1070

    Article  CAS  Google Scholar 

  • Gianessi LP, Carpenter JE. 1999. Agricultural Biotechnology: Insect Control Benefits. Biotechnology Industry Organization (BIO) http://bio.org/foogundag/bioins01.html

  • Giddings V. 2000. BIO Statement regarding purported new findings on Bt corn and Monarch butterflies. August 22. E-mail listserve kammann@sgi.unibe.ch

    Google Scholar 

  • Goldburg B. 1999. Preliminary research results presented during the Monarch research symposium Nov.2.1999. November 11. E-mail listserve kammann@sgi.unibe.ch

    Google Scholar 

  • Gould F. 1988. Genetic engineering, integrated pest management and the evolution of pests. TREE/TIBTECH 3/6(4):515–518

    Google Scholar 

  • Gould FL. 1997. Comments of Fred Gould on plant pesticide resistance management. Comments to an EPA-Hearing 21.03.1997 (OPP-DO470):1–3

    Google Scholar 

  • Haider MZ, Knowles BH, Ellar DJ. 1986. Specifity of Bacillus thuringiensis vor. colmeri insecticidal endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases. Eur. J. Biochem. 156:531–540

    Article  CAS  Google Scholar 

  • Hansen L. Obricki J. 1999. Non-target effects of Bt corn pollen on the Monarch Butterfly (Lepidoptera: Danaidae) 54th Compiled Proseccings, Annual Meeting, North Central Brancj of the Entomological Society of America, abstract http://www.ent.iastate.edu/entsoc/ncb99/prog/abs/D81.html

  • Head G. 2000. The challenge of producing environmental friendly crops. ESF/AIGM (European Science Foundation) The environmental implications of genetically modified plants with insect resistance genes. Workshop, September 2000, Bern, Switzerland

    Google Scholar 

  • Heckel DG. 2000. Genetic mechanisms and ecological consequences of the development of resistance in insect pests to transgenic plants. ESF/AIGM (European Science Foundation) The environmental implications of genetically modified plants with insect resistance genes. Workshop, September 2000, Bern, Switzerland

    Google Scholar 

  • Hilbeck A, Baumgartner M, Fried PM, Bigler F. 1998. Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental Entomology 27:480–487

    Google Scholar 

  • Ho M. van 2000. July 12. E-mail listserve kammann@sgi.unibe.ch

    Google Scholar 

  • House of Lords 1999. Session 1998/99: European Communities — Second Report

    Google Scholar 

  • Huang F, Buschman LL, Higgins RA, McGaughey WH. 1999. Inheritance of resistance to Bacillus thuringiensis Toxin (Dipel ES) in the European Corn Borer. Science 284:965–967.

    Article  CAS  Google Scholar 

  • Johnson MT. 1997. Interaction of resistant plants and wasp parasitoids of Tobacco Budworm (Lepidoptera: Noctuidae). Environ. Entomol. 26(2):207–214

    Google Scholar 

  • Klöpffer W, Renner I, Tappeser B, Eckelkamp C, Dietrich R. 1999. Life Cycle assessment gentechnisch veränderter Produkte als Basis für eine umfassende Beurteilung möglicher Umweltauswirkungen. Umweltbundesamt Österreich. Monographien Bd. 111. Wien, 253 S.

    Google Scholar 

  • Kramer KJ, Moragn TD, Throne JE, Dowell FE, Bailey M, Howrd JA. 1990. Transgenic avidin maize is resistant to storage insect pests. Nature Biotechnology 18(6):670–674

    Article  CAS  Google Scholar 

  • Kreutzweiser DP, Gringorten JL, Thomas DR, Butcher JT. 1996. Functional effects of the bacterial insecticide Bacillus thuringiensis var. kurstaki on aquatic communities. Ecotoxicology and Environmental Safety 33:271–280

    Article  CAS  Google Scholar 

  • Langenbruch GA. 1998. B.t.-Mais und B.t.-Kartoffeln — gefährden sie den Einsatz von Bacillus thuringiensis-Päparaten in Deutschland? Mitt.a.d.Biol. Bundesanst. 357:342

    Google Scholar 

  • Lenormand T, Bourguet D, Giullemaud T, Raymond M. 1999. Tracking the evolution of insecticide resistance in the mosquito Culex pipiens. Nature 400:861–864

    Article  CAS  Google Scholar 

  • Lenormand T, Raymond M. 1998. Resistance management: the stable zone strategy. Proc. Roy. Soc. Lond. Ser. B. 265:1985–1990

    Article  Google Scholar 

  • Liu Y, Tabashnik BE, Dennehy TJ, Patin AL, Bartlett AC. 1999. Development time and resistance to Bt crops. Nature 400:19

    Article  CAS  Google Scholar 

  • Losey JE, Raynor LS, Carter ME. 1999. Transgenic pollen harms monarch larvae. Nature 399:214.

    Article  CAS  Google Scholar 

  • Louda SM. 1999. Insect Limitation of Weedy Plants and Ist Ecological Implications. In: Traynor PL, Westwood JH. (eds.) Ecological Effects of Pest Resistance Genes in Managed Ecosystems. Information Systems für Biotechnology:43–48

    Google Scholar 

  • Lozzia GC, Manachini B. 2000. Field studies and laboratory bioassay of the effect of Bt on non-target arthropods. ESF/AIGM (European Science Foundation) The environmental implications of genetically modified plants with insect resistance genes. Workshop, September 2000, Bern, Switzerland

    Google Scholar 

  • Luttrell RG, Mascarenhas VJ, Schneider JC, Parker CD, Bullock PD. 1995. Effect of transgenic cotton expressing endotoxin protein on arthropod populatione in Mississippi cotton. Proc. of the Beltwide cotton production research conference. National cotton council of America, Memphis TN, 760–763

    Google Scholar 

  • Mallet J, Porter P. 1992. Preventing insect adaptation to insect-resistant crops: Are seed-mixtures or refugia the best strategy? Proc. Roy. Soc. London Ser. B:165–198

    Google Scholar 

  • Marvier M, Kareiva K. 1999. Extrapolating from Field Experiments tha Remove Herbivores to Population-Level Effects of Herbivore Resistance Genes. In: Traynor PL, Westwood JH. (eds.) Ecological Effects of Pest Resistance Genes in Managed Ecosystems. Information Systems für Biotechnology:57–64

    Google Scholar 

  • Marrone PG, Macintosh SC. 1993. Resistance to Bacillus thuringiensis and resistance management. In: Entwistle JS, Cory MJ, Bailey MJ, Higgs S. (eds.) Bacillus thuringiensis, an environmental biopesticide: theory and practice, 221–235

    Google Scholar 

  • Matten SR, Lewis PI. 1995. EPA and B.t.- Plant-pesticide resistance management. NBIAP News Report, Internet: http://www.nbiap.vt.edu

  • Melin BE, Cozzi EM. 1990. Safety to nontarget invertebrates of lepidopteran strains of Bacillus thuringiensis and their ß-exotoxins. In: Laird, M., Lacey, L.A., Davidson, E.W. (eds.) Safety of microbial insecticides, CRC Press, Inc., Boca Raton, Florida, 149–167

    Google Scholar 

  • Metcalf CL, Flint WP. 1962 Destructive and useful insects — their habits and control, 4th ed., McGraw-Hill Book Company, New York, San Francisco, Toronto

    Google Scholar 

  • National Corn Growers Association April 21, 1999. Industry insect management program. http://.Ncga.Corn/02profits/Insectmgmtplan/toc.Htm

    Google Scholar 

  • Pham-Delègue, Jouanin L. 2000. Impact of genetically modified plants on honeybees. ESF/AIGM (European Science Foundation) The environmental implications of genetically modified plants with insect resistance genes. Workshop, September 2000, Bern, Switzerland

    Google Scholar 

  • Pilcher CD, Obrycki JJ, Rice ME, Lewis LC. 1997. Preimaginal development, survival, and field abundance of insect predators on transgenic Bacillus thuringiensis corn. Environ. Entomol. 26(2):446–454

    Google Scholar 

  • Pimentel D, Mc Laughlin L, Zepp A, Lakitan B, Kraus T, Kleinman P, Vancini F, Roach WJ, Graap E, Keeton W, Selig G. 1993. Environmental and economic impacts of reducing U.S. agricultural pesticide use. In: Pimentel D, Lehman H. (eds.) The pesticide question, New York, 223–278

    Google Scholar 

  • Pimentel D, Raven PH. 2000. Commentary: Bt corn pollen impacts on nontarget lepidoptera: Assessment of effects in nature. Proc. Natl. Acad. Sci. USA 97(15):8198–8199

    Article  CAS  Google Scholar 

  • Pleasants JM, Hellmich RL, Lewis LC. 1999. Pollen deposition on milkweed leaves und der natural conditions. Presentation at the Monarch butterfly research symposium, Chicago, Nov. 1999

    Google Scholar 

  • Powell DA, Grant SE, Lastivic S. 1999. A survey of Ontario corn producers to assess compliance with refugia recommendations to manage development of resistance to genetically engineered Bt-corn in the European corn borer. Agri-food Risk Management and Communication Technical Report No. 10 http://www.oac.uoguelph.ca/riskcomm/plant-ag/bt-survey/bt-survey.htm

    Google Scholar 

  • Raymond M, Callaghan A, Fort P, Pasteur N. 1991. Worldwide migration of amplified insecticide resistance genes in mosquitos. Nature 350:151–153

    Article  CAS  Google Scholar 

  • Rice M, Pilcher CD. 1998. Potential benefits and limitations of transgenic BT corn for management of the European Corn Borer. American Entomologist, Summer 1998

    Google Scholar 

  • RKI (Robert-Koch-Institut, Berlin) 1999a. Eigenschaften der freigesetzten Organismen in den EU-Mitgliedstaaten. (http://www.rki.de/GENTEC/FREISETZUNGEN/EU_TRAIT.HTM)

  • RKI 1999b. Beispiele gentechnisch veränderter Pflanzen, die in der EU auf dem Markt sind. (http://www.rki.de/GENTEC/INVERKEHR/IVKLIST_HTM)

  • Roush RT. 1997. Managing resistance to transgenic crops. In: Carozzi N, Koziel M (eds.) Advances in Insect Control: The Role of Transgenic Plants, Bristol, 271–294

    Google Scholar 

  • Saik JE, Lacey LA, Lacey CM. 1990. Safety of microbial insecticides to vertebrates-domestic animals and wildlife. In: Laird M, Lacey LA, Davidson EW. (eds.) Safety of microbial insecticides, CRC Press, Inc., Boca Raton, Florida, 115–132

    Google Scholar 

  • Saxena D, Flores S, Stotzky G. 1999. Insecticidal toxin in root exudates from B.t. corn Nature 402:480

    CAS  Google Scholar 

  • Schuler T, Potting PJ, Denholm I, Poppy GM. 1999 Parasitoid behaviour and Bt plants. Nature 400:825–826

    Article  CAS  Google Scholar 

  • Schüler T. 2000. Potential side effects of GM oilseed rape and GM apple on arthropod natural enemies. ESF/AIGM (European Science Foundation) The environmental implications of genetically modified plants with insect resistance genes. Workshop, September 2000, Bern, Switzerland

    Google Scholar 

  • Schutte G, Riede M 1998: Bacillus thuringiensis-Toxine in Kulturpflanzen. In: Nutzung der Gentechnik im Agrarsektor des USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit. Studie im Auftrag des Umweltbundesamtes, UBA-Texte 47/98, Berlin, 447–508.

    Google Scholar 

  • Schütte G. 2000. Varieties Resistant Against Invertebrate Pests. Mitteilungen aus dem Institut für Allgemeine Botanik Hamburg. Bd.28. http://www.gtz.de/biotech/dokument.htm

  • Sears M, Stanley-Horn D. 2000. Impact of Bt corn pollen on monarch butterfly populations. In: Fairbairn C. et al. (eds.) Proceedings of the 6th International Symposium on the Biosafety of GMOs, July 2000, Saskatoon, Canada, 120–130

    Google Scholar 

  • Sears MK, Shelton A. 2000 Questionable conclusions from latest monarch study. September 6. E-mail listserve kammann@sgi.unibe.ch

    Google Scholar 

  • Sears MK, Stanley-Horn DE, Mattila HR. 2000. Preliminary report on the ecological impact of BT corn pollen on the Monarch butterfly in Ontario. Department of Environmental Biology, Univeresity of Guelph, Ontario N1G 2W1

    Google Scholar 

  • Sears MK. 2000. Comments on recent reports dealing with Bt corn and the Monarch butterfly. Crop Pest Ontario Vol. 5(15), August 28. E-mail listserve kammann@sgi.unibe.ch

    Google Scholar 

  • Shelton AM, Tang JD, Ruosh RT, Metz TD, Earle ED. 2000. Field tests on managing resistance to Bt-engineered plants. Nature Biotechnology 18(3):339–342

    Article  CAS  Google Scholar 

  • Siegel JP, Shadduck JA. 1990. Safety of microbial insecticides to vertebrates-humans. In: Laird M, Lacey LA, Davidson EW. (eds.) Safety of microbial insecticides, CRC Press, Inc., Boca Raton, Florida, 101–113

    Google Scholar 

  • Sims S. 1995 Bacillus thuringiensis var. kurstaki (CryIA8c) Protein expressed in transgenic cotton: Effects on beneficial and other non-target insects. Southwestern Entomologist 20(4):493–500

    Google Scholar 

  • SRU (Der Rat von Sachverständigen für Umweltfragen) 1998. Umweltgutachten 1998, Metzler-Poeschel Stuttgart.

    Google Scholar 

  • Steffey K. 2000. Here we go again: Bt corn and Monarch butterflies. August 28. E-mail listserve kammann@sgi.unibe.ch

    Google Scholar 

  • Stewart CN. 1999. Insecticidal transgenes into nature: gene flow, ecological effects, relevancy, and monitoring, In: Relevance for transgenic crops. British Crop Protection Council Symposium Proceedings No. 72:179–190.

    Google Scholar 

  • Stewart CN, Halfhill MD. 2000. Consequences of gene flow from Bt canola. ESF/AIGM (European Science Foundation) The environmental implications of genetically modified plants with insect resistance genes. Workshop, September 2000, Bern, Switzerland

    Google Scholar 

  • Tabashnik BE, Cushing NL, Finson N, Johnson MW. 1990. Field development of resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 783:1671–1676

    Google Scholar 

  • Tabashnik BE. 1994. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39:47–79

    Article  Google Scholar 

  • Tabashnik BE, Malvar T, Liu Y-B, Finson N, Borthakur D, Shin B-S, Park S-H, Masson L, Maagd RA de, Bosch D. 1996. Cross-resistance of the Diamond Moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Applied and Environmental Microbiology: 2839–2844

    Google Scholar 

  • Tapp H, Stotzky G. 1998. Persistance of the insecticidal toxin from Bacillus thuringiensis Subs, kurstaki in soil. Soil. Biol. Biochem. 30(4):471–476

    Article  CAS  Google Scholar 

  • Theiling KM, Croft BA. 1988. Pesticide side-effects on arthropod natural enemies: a database summary. Agriculture, Ecosystems and Environment 21:191–218

    Article  CAS  Google Scholar 

  • Thomas K. Powell D. 2000 Backgrounder: Genetically-Engineered Bt-containing field corn. http://www.plant.uoguelph.ca/safefood/gmo/updated-bt-backgrounder.htm

    Google Scholar 

  • Thompson MA, Schnepf HE, Feitelson JS. 1995. Structure, function and engineering of Bacillus thuringiensis toxins. Genetic Engineering 17:99–117

    CAS  Google Scholar 

  • Torgersen H, Seifert F. 1999. Austria: Precautionary blockage of transgenic crops (and food?). Final report for the DG XII/ELSA projekt „Safety Regulation of Transgenic crops — Completing the Internal Market

    Google Scholar 

  • USDA (United States Department of Agriculture) 1999. Biotechnology Risk Assessment Research Grants Program Home Page. http://www.reeusda.gov/crgamMotechrisk.biotech.htm

  • USDA 2000. Field test releases in the US (www.nbiap.vt.edu/cfdocs/fieldtests2.cfm)

  • Vinson SB. 1990. Potential impact of microbial insecticides on beneficial arthropods in the terrestrial environment. In: Laird M, Lacey LA, Davidson EW. (eds.) Safety of microbial insecticides, CRC Press, Inc., Boca Raton, Florida, 43–64

    Google Scholar 

  • Wagner DL, Peacock JW, Carter JL, Talley SE. 1996. Field assessment of Bacillus thuringiensis on nontarget Lepidoptera. Environ. Entomol. 25(6): 1444–1454

    Google Scholar 

  • Wallimann T. 2000. B.t. toxin: Assessing GM Strategies. Science 287:5450:41

    Article  Google Scholar 

  • Whalon ME, Wierenga JM. 1994. Bacillus thuringiensis resistant Colorado Potato Beetle and transgenic plants: Some operational and ecological implications for deployment. Biocontrol Science and Technology 4:555–561

    Article  Google Scholar 

  • Wraight CL, Zangerl AR, Caroli MJ, Berenbaum MR. 2000. Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proc. Natl. Acad. Sci. USA 97(14):7700–7703

    Article  CAS  Google Scholar 

Literatur

  • Abad MS, Hakimi SM, Kaniewski WK, Rommens CMT, Shulaev V, Lam E, Shah DM. 1997. Characterization of Acquired Resistance in Lesion-Mimic Transgenic Potato Expressing Bacterio-Opsin. MPMI 10:635–645

    Article  CAS  Google Scholar 

  • Antonovics J. 1999. Pathogens and Plant Populations Dynamics: The Effect of Resistance Genes on Numbers and Distribution. In Traynor PL, Wetseood JH (eds.). Proceedings of the Workshop on Ecological Effects of Pest Resistance Genes in Managed Ecosystems, Blacksburry

    Google Scholar 

  • Bendiek J, Ehlers U. 2000. Freisetzungen gentechnisch veränderter Pflanzen in Deutschland und der EU aus phytopathologischer Sicht. In: BBA (ed.) 52. Deutsche Pflanzenschutztagung in Freising-Weihenstephan, 9.-12.10.2000, Berlin

    Google Scholar 

  • Bliffeld M, Mundy J, Potrykus I, Fütterer J. 1999. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor. Appl. Genet. 98:1079–1086

    Article  CAS  Google Scholar 

  • Broer I, Finke M, Kriete G, Küster H, Quandt H-J, Wedell S. 1998. Analyse der Auswirkungen von transkodiertem T4-Lysozym auf den Modellorganismus Rhizobium leguminosarum. In Schiemann J (ed.). Freisetzungsbegleitende Sicherheitsforschung mit gentechnisch veränderten Pflanzen und Mikroorganismen, Braunschweig

    Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R. 1991. Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solarni. Science 254:1194–1197

    Article  CAS  Google Scholar 

  • Bushnell WR, Somers DA, Grioux RW, Szabo LJ, Zeyen RJ. 1998. Genetic engineering of disease resistance in cereals. Canadian Journal of Plant Pathology 20:137–220

    Article  Google Scholar 

  • Cao H, Li, X, Dong X. 1998. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA 95:6531–6536

    Article  CAS  Google Scholar 

  • Cary JW, Rajasekaran K, Jaynes JM, Cleveland TE. 2000. Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Science 154:171–181

    Article  CAS  Google Scholar 

  • Clausen M, Kräuter R, Schachermayr G, Potrykus I, Sautter C. 2000. Antifungal activity of a virally encoded gene in transgenic wheat. Nature Biotechnology 18:446–449

    Article  CAS  Google Scholar 

  • Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush GS, Muthukrishnan S, Datta SK. 1999. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor. Appl. Genet. 98: 1138–1145

    Article  CAS  Google Scholar 

  • Deák M, Horváth GV, Davletova S, Török K, Sass L, Vass I, Barna B, Király Z, Dudits D. 1999. Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nature Biotechnology 17:192–196

    Article  Google Scholar 

  • Elstner EF, Oßwald W, Schneider I. 1996. Phytopathologie. Spektrum Akademischer Verlag, Heidelberg, 328S.

    Google Scholar 

  • Evans IJ, Greenland AJ. 1998. Transgenic Approaches to Disease Protection: Applications of Antifungal Proteins. Pestic. Sci. 54:353–359

    Article  CAS  Google Scholar 

  • Gerber HR, Anderson JPE, Bügel-Morgensen B, Castle D, Domsch KH, Malkomes H-P, Someville L, Arnold DJ, von de Werf H, Verbeken R, Vonk JW. 1991. Revision of recommended laboratory tests for assessing side-effects of pesticides on the soil microflora. Toxicological and Environmental Chemistry 30:249–261

    Article  Google Scholar 

  • Heidenreich B. 1999. Analyse und Bewertung der Risikoforschung zur Freisetzung gentechnisch veränderter Mikroorganismen. Dissertation FB Biologie, Hamburg

    Google Scholar 

  • Heo WD, Lee SH, Kim MC, Kim JC, Chung WS, Chun HJ, Lee KJ, Park CY, Park HC, Choi JY, Cho MJ. 1999. Involvement of specific calmodulin isoforms in salicylic acid-dependent activation of plant disease resistance responses. Proc. Natl. Acad. Sci. USA 96:766–771

    Article  CAS  Google Scholar 

  • Honée G. 1999. Engineered resistance against fungal plant pathogens. European Jouranl of Plant Pathology 105:319–326

    Article  Google Scholar 

  • Jarosch B, Kogel K-H, Schaffrath U. 1999. The Ambivalence of the Barley Mlo Locus: Mutations Conferring Resistance Against Powdery Mildew (Blumeria graminis f.sp. hordei) Enhance Susceptibility to the Rice Blast Fungus Magnaporthe grisea. MPMI 12:508–514

    Article  CAS  Google Scholar 

  • Keller H, Pamboukdjian N, Ponchet M, Poupet A, Delon A, Verrier J-L, Roby D, Ricci P. 1999. Pathogen Induced Elicitin Production in Transgenic Tobacco Generates a Hypersensitive Response and Nonspecific Disease Resistance. The Plant Cell 11:233–235

    Google Scholar 

  • Kogel K-H, Hückelhoven R, Beckhove U, Kumar J. 2000. Die mlo Resistenz der Gerste: Wirkung gegen biotrophe und pertotrophe Parasiten. In: BBA (ed.) 52. Deutsche Pflanzenschutztagung in Freising-Weihenstephan, 9.-12.10.2000, Berlin

    Google Scholar 

  • Liu D, Raghothama KG, Hasegawa PM, Bressan RA. 1994. Osmotin overexpression in potato delays development of disease symptoms. Proc. Natl.Acad.Sci.USA 91:1888–1892

    Article  CAS  Google Scholar 

  • Lottmann J, Berg G. 1998. Analyse der Auswirkungen von transkodiertem T4-Lysozym auf die kartoffelassoziierten nützlichen Bakterien. In Schiemann J (ed.). Freisetzungsbegleitende Sicherheitsforschung mit gentechnisch veränderten Pflanzen und Mikroorganismen, Braunschweig

    Google Scholar 

  • Lucas JA. 1999. Plant immunisation: from myth to SAR. Pestic. Sci. 55:193–196

    Article  CAS  Google Scholar 

  • Lukow T, Liesack, W. 1998. Untersuchungen zur räumlichen Homogenität bakterieller Lebensgemeinschaften im Ackerboden bepflanzt mit transgenen Barnase/Barstar-und nicht-transgenen Kartoffeln. In Schiemann J (ed.). Freisetzungsbegleitende Sicherheitsforschung mit gentechnisch veränderten Pflanzen und Mikroorganismen. Braunschweig

    Google Scholar 

  • Melchers LS, Stuiver MH. 1998. The development of transgenic plants for the control of plant diseases. In British Crop Protection Council (Hrsg.). Symposium Proceedings No71, Biotechnology in Crop Protection, Facts and Facilities. Brighton

    Google Scholar 

  • Mitsuhara I, Matsufuru H, Ohshima M, Kaku H, Nakajima Y, Murai N, Natori S, Ohashi Y. 2000. Induced Expression of Sarcotoxin IA Enhanced Host Resistance Against Both Bacterial and Fungal Pathogens in Transgenic Tobacco. MPMI 13:860–868

    Article  CAS  Google Scholar 

  • Nakajima H, Muranaka T, Ishige F, Akustu K, Oeda K. 1997. Fungal and bacterial disease resistance in transgenic plants expressing human lysozyme. Plant Cell Report 16:674–679

    Article  CAS  Google Scholar 

  • Nishizawa Y, Nishio Z, Nakazono, Soma M, Nakajima E, Ugaki M, Hibi T. 1999. Enhanced resistance to blast (Magnaporthe grisea) in transgenic japónica rice by constitutive expression of rice chitinase. Theor. appl. Genet. 99:383–390

    Article  CAS  Google Scholar 

  • Oldach K. 1999. Stabile Expression heterologer Gene in Weizen (Triticum aestivum L.) zur Verbesserung der Pilzresistenz. Dissertation, FB Biologie, Hamburg. 119S.

    Google Scholar 

  • Pink D, Puddepath I. 1999. Deployment of disease resistance genes by plant transformation-a ‘mix and match’ approach. trends in plant sciences 4:71–75

    Article  Google Scholar 

  • Priestley RH, Bayles RA. 1980. Varietal Diversification as a Means pf Reducing the Spread of Cereal Diseases in the United Kingdom. J. natn. Inst. agric. Bot. 15:205–214

    Google Scholar 

  • Riuz-Lozano JM, Gianinazzi S, Gianiazzi-Pearson V. 1999. Genes involved in resistance to powdery mildew in barley differentially modulate root colonization by the mycorrhizal fungus Glomus mosseae. Mycorrhiza 9:237–240

    Article  Google Scholar 

  • RKI (Robert-Koch-Institut). 1999. Kurzbeschreibung des Freisetzungsvorhabens. http://www.rki.de/GENTEC/FREISETZUNGEN/ORG/49.HTM

  • RKI. 2000a. Kurzbeschreibung des Freisetzungsvorhabens. http://www.rki.de/GENTEC/FREISETZUNGEN/ORG/39.HTM

  • RKI. 2000b. Kurzbeschreibung des Freisetzungsvorhabens. http://www.rki.de/GENTEC/FREISETZUNGEN/ORG/66.HTM

  • RKI. 2000c. Kurzbeschreibung des Freisetzungsvorhabens. http://www.rki.de/GENTEC/FREISETZUNGEN/ORG/78.HTM

  • Robinson RA. 1969. Disease Resistance Terminology. Rev. appl. Mycol. 48:593–605

    Google Scholar 

  • Schaffrath U, Mauch F, Freydl E, Schweizer P, Dudler R. 2000. Constitutive expression of the defense related Rir1b gene in transgenic rice plants confers resistance to the rice blast fungus Magnaporthe grisea. Plant Molecular Biology 43:59–66

    Article  CAS  Google Scholar 

  • Serrano C, Arce-Johnson P, Torres H, Gebauer M, Gutierrez M, Moreno M, Jordana X, Venegas A, Kalazich J, Holuigue L. 2000. Expression of the Chicken Lysozyme Gene in Potato Enhances Resistance to Infection by Erwinia carotovora subsp. Atroseptica. Amer. J. of Potato Res. 77:191–199

    Article  CAS  Google Scholar 

  • Shen S, Li Q, He S-Y, Barker KR, Li D, Hunt AG. 2000. Conversion of compatible plant-pathogen interactions into incompatible interactions by expression of the Pseudomonas syringae pv.syringae 61 hrmA-gene in transgenic tobacco plants. The Plant Journal 23:205–213

    Article  CAS  Google Scholar 

  • Smalla K, Heuer H. 1998. Effekte transgener T4-Lysozym produzierender Kartoffellinien auf Bakteriengemeinschaften der Rhizosphäre im Freilandversuch. In Schiemann J (ed.). Freisetzungsbegleitende Sicherheitsforschung mit gentechnisch veränderten Pflanzen und Mikroorganismen, Braunschweig

    Google Scholar 

  • Stark-Lorenzen P, Nelke B, Hänßler G, Mühlbach HP, Thomzik JE. 1997. Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Reports 16:668–673

    Article  CAS  Google Scholar 

  • Strittmatter G, Janssens J, Opsomer C, Botterman J. 1995. Inhibition of Fungal Disease Development in Plants by Engineering Controlled Cell Death. Bio/Technology 13:1085–1089

    Article  CAS  Google Scholar 

  • Tabei Y, Kitade S, Nishizawa Y, Kikuchi N, Kayano T, Hibi T, Akutsu K. 1998. Transgenic cucmber plants harborin a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Reports 17:159–164

    Article  CAS  Google Scholar 

  • Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasión R, Whalen MC, Stall RE, Staskawicz BJ. 1999. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. PNAS 96:14153–14158

    Article  CAS  Google Scholar 

  • Takaichi M, Oeda K. 2000. Transgenic carrots with enhanced resistance against two major pathogens, Erysiphe heraclei and Alternaria dauci. Plant Science 153:135–144

    Article  CAS  Google Scholar 

  • Tepfer D, Boutteaux C, Vigon C, Aymes S, Perez V, O’Donohue MJ, Huet J-C, Pernollet J-C. 1998. Phytophtora Resistance Through Production of a Fungal Protein Elicitor (ß-Cryptogein) in Tobacco. MPMI 11:64–67

    Article  CAS  Google Scholar 

  • Thomas CM, Tang S, Hammond-Kosack K, Jones JDG. 2000. Comparison of the Hypersensitive Response Induced by the Tomato Cf-4 and Cf-9 Genes in Nicotiana spp. MPMI 13:465–469

    Article  CAS  Google Scholar 

  • Thomzik JE, Stenzel K, Stöker R, Schreier PH, Haiin R, Stahl DJ. 1997. Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophtora infestons. Physiological and Molecular plant Pathology 51:265–278

    Article  CAS  Google Scholar 

  • Trudel J, Potvin C, Asselin A. 1995. Secreted hen lysozyme in transgenic tobacco: recovery of bound enzyme and in vitro growth inhibition of plant pathogens. Plant Science 106:55–62

    Article  CAS  Google Scholar 

  • VanEtten HD, Mansfield JW, Bailey JA, Farmer EE. 1994. Two Classes of Plant Antibiotics: Phytoalexins versus „Phytoanticipins“. The Plant Cell 6:1191–1192

    CAS  Google Scholar 

  • Verberne MC, Verpoorte R, Bol JF, Mercado-Blanco J, Linthorst HJM. 2000. Overproduction of salycilic acid in plants by bacterial transgenes enhances pathogen resistance. Nature Biotechnology 18:779–783

    Article  CAS  Google Scholar 

  • Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemke A, Boiler T. 1995. Colonization of Transgenic Tobacco Constitutively Expressing Pathogenesis-Relaated Proteins by the Vesicular-Arbuscular Mycorrhizal Fungus Glomus mosseae. Applied and environmental microbiology 61:3031–3034

    CAS  Google Scholar 

  • Vries J de, Harms K, Wackernagel W. 1998. Untersuchungen zur Entlassung von T4-Lysozym und rekombinanter DNA aus transgenen, T4-Lysozym-produzierenden Kartoffeln. In Schiemann J (ed.). Freisetzungsbegleitende Sicherheitsforschung mit gentechnisch veränderten Pflanzen und Mikroorganismen, Braunschweig, 49–64

    Google Scholar 

  • Wang Y, Nowak G, Culley D, Hadwiger LA, Fristensky B. 1999. Constitutive Expression of Pea Defense Gene DRR206 Confers Resistance to Blackleg (Leptosphaeria maculans) Disease in Transgenic Canola (Brassica napus). MPMI 12:410–418

    Article  CAS  Google Scholar 

  • Westwood J. 1999. Altering Programmed Cell Death Leads to Pathogen-Resistant Plants. Information Systems for Biotechnology ISB News Report 1/99, 7–9

    Google Scholar 

  • Wu G, Shrott BJ, Lawrence EB, Levine EB, Fitzsimmons KC, Shah DM. 1995. Disease Resistance Conferred by Expression of a Gene Encoding H2O2-Generating Glucose Oxidase in Transgenic Potato Plants. The Plant Cell 7:1357–1368

    CAS  Google Scholar 

  • Wu G, Shrott BJ, Lawrence EB, León J, Fitzsimmons KC, Levine EB, Raskin I, Shah DM. 1997. Activation of Host Defense Mechanisms by Elevated Production of H2O2 in Transgenic Plants. Plant Physiol. 115:427–435

    CAS  Google Scholar 

  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N. 2000. Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Reports 19:639–646

    Article  CAS  Google Scholar 

  • Yu D, Xie Z, Chen C, Fan B, Chen Z. 1999. Expression of tobacco class II catalase gene activates the endogenous homologous gene and is associated with disease resistance in transgenic potato plants. Plant Molecular Biology 39:477–488

    Article  CAS  Google Scholar 

  • Zhang L, Xu J, Brich RG. 1999. Engineered detoxification confers resistance against a pathogenic bacterium. Nautre Biotechnology 17:1021–1024

    Article  CAS  Google Scholar 

  • Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ. 1994. Enhanced Protection Against Fungal Attack by Constitutive Co-expression of Chtitinase and Glucanase Genes in Transgenic Tobacco. Bio/technology 12:807–812

    Article  CAS  Google Scholar 

  • Zoubenko O, Uckun F, Hur Y, Chet I, Turner N. 1997. Plant resistance to fungal infection induced by nontoxic pokeweed antiviral protein mutants. Nature Biotechnology 15:992–996

    Article  CAS  Google Scholar 

Literatur

  • Aaziz R, Tepfer M. 1999a. Recombination in RNA viruses and in virus-resistant transgenic plants. Journal of General Virology 80:1339–1346

    CAS  Google Scholar 

  • Aaziz R, Tepfer M. 1999b. Recombination between Genomic RNAs of two Cucumoviruses under conditions of minimal selection pressure. Virology 263:282–289

    Article  CAS  Google Scholar 

  • AIBS (American Institute of Biological Sciences) 1995. Transgenic virus resistant plants and new plant viruses. Meeting report from AIBS workshop sponsored by the U.S. Department of Agriculture, 47 S.

    Google Scholar 

  • Allison RF. 1998. Significance of RNA recombination in virus-resistant transgenic plants. 5th International Symposium on the Biosafety of GMOs, September 1998, Braunschweig, Germany

    Google Scholar 

  • Allison RF. 1999. Factors affecting recombination frequency between plant viruses and viral transgenes. http://www.reeusda.gov/crgam/biotechrisk/biot99nt.h

  • Allison RF, Greene AN, Schneider WL. 1997. Significance of RNA recombination in capsid protein-mediated virus resistant transgenic plants. In: Tepfer M, Balázs E. (eds.) Virus-resistant transgenic plants: Potential ecological impact, Berlin, 40–44

    Google Scholar 

  • Anonym 1997. Summary of Public Meeting on Virus Resistant Transgenic Plants. http://www..aphis.usda.gov/biotech/virus/virussum.html

    Google Scholar 

  • Anoym 2000. Regulatory Agencies and the Spread of Transgenic Plants. A U. S. National Academies Report 5-6:176

    Google Scholar 

  • APHIS 2000. USDA Field Test Releases Database for the US. http://www.nbiap.vt.edu/cfdocs/filedtests1.cfm

  • Bartsch D, Schmidt M, Pohl-Orf M, Haag C, Schuphan I. 1996. Competitiveness of transgenic sugar beet resistant to Beet Necrotic Yellow Vein Virus and potential impact on wild beet population. Molecular Ecology 5:199–205

    Google Scholar 

  • BBA (Biologische Bundesanstalt für Land-und Forstwirtschaft, Braunschweig) 2000. Gentechnik-Datenbank. Tabelle 3: Anträge zur Freisetzung von GVO: eingeführte Eigenschaften, http://www.bba.de/gentech/tab3.htm

  • Beachy RN. 1999. Coat-protein-mediated resistance to tobacco mosaic virus: discovery mechanisms and exploitation. Phil. Trans. R. Soc. Lond. 354:659–664

    Article  CAS  Google Scholar 

  • Borja M, Rubio T, Scholthof HB, Jackson AO. 1998. Restoration of Wild-Type Virus by Double Recombination of Tombusvirus Mutants with a Host Transgene. Molecular Plant-Microbe Interactions 12:153–162

    Article  Google Scholar 

  • Bujarski JI. 1997. Different mechanisms of homologous and nonhomolugous recombination in Brome Mosaik Virus, a model plant RNA Virus. In: Tepfer M, Balázs E. (eds.) Virus-resistant transgenic plants: Potential ecological impact, Berlin, 26–32

    Google Scholar 

  • Candresse T, Revers F, Le Gall O, Kofalvi SA, Marcos J, Pallás V. 1997. Systematic search for recombination events in plant viruses and viroids. In: Tepfer M, Balázs E. (eds.) Virus-resistant transgenic plants: Potential ecological impact, Berlin, 20–25

    Google Scholar 

  • Falk BW. 1999. Incidence and Origin of New Viruses in Multiple Virus-Resistant Cucurbits. http://www.reeusda.gov/crgam/biotechrisk/biot99nt.h

  • Fuchs M, Gonsalves D. 1999. Risk assessment of gene flow from a virus-resistant transgenic squash into a wild relative. In: Ammann K, Jacot Y, Simonsen V, Kjellsson G (eds.). Methods for Risk Assessment of Transgenic Plants. III. Ecological risks and prospects of transgenic plants, where do we go from here? A dialogue between biotech industry and science, Basel, Schweiz, 141–143

    Google Scholar 

  • García-Arenal F, Malpica JM, Fraile A. 2000. Evolution of plant virus populations. The role of genetic exchange. In: Fairbairn C, Scoles G, McHughen A. (eds.) Proceedings of the 6th International Symposium on The Biosafety of Genetically Modified Organisms, July 2000, Saskatoon, Canada, 91–96

    Google Scholar 

  • Gonsalves D, Ferreira SA. 1999. Recombination of Papaya Ringspot Virus with Coat Protein Transgenes Encoded by Transgenic Papaya Growing under Field Conditions. http://www.reeusda.gov/crgam/biotechrisk/biot99nt.h

  • Henry C. 2000. at ESF/AIGM (European Science Foundation) The wider environmental implications of genetically modified plants. Workshop, January 2000, Cambridge, UK

    Google Scholar 

  • Hull R. 1998. Detection of Risks Associated with Coat Protein Transgenics. In: Foster GD, Taylor SC. (eds.) Methods in Molecular Biology 81, Plant Virology Protocols. From Virus Isolation to Transgenic Resistance, 547–555

    Google Scholar 

  • Jakab G, Vaiatij FE, Droz E, Malnoë P. 1997. Transgenic plants expressing viral sequences create a favourable environment for recombination between viral sequences. In: Tepfer M, Balázs E. (eds.) Virus-resistant transgenic plants: Potential ecological impact, Berlin, 45–51

    Google Scholar 

  • James C, Krattiger AF. 1996. Global review of the field testing and commercialisation of transgenic plants: 1986-1995 — The first decade of crop biotechnology. ISAAA Briefs 1, Ithaca, N.Y., 31 S.

    Google Scholar 

  • James C. 1999. Global review of commercialized transgenic crops: 1999. ISAAA Briefs 12., Ithaca, N.Y.

    Google Scholar 

  • Malnoë P, Jakab G, Droz E,. Vaiatij FE. 1999. RNA recombination in transgenic virus resistant plants. In: Amman K. et al. (eds.) Methodes for risk assessment of transgenic plants III. Ecological Riskes and prospects of transgenic plants, Basel, 145–147

    Google Scholar 

  • Mangold B, Kraus J, Mechelke W, Büttnaer G. 1998 Resistenz gegenüber dem beet necrotic yellow vein virus (BNYW) bei konventionell gezüchteten und gentechnisch entwickelten Linien und Sorten von Zuckerrüben. Mitt. a. d. Biol. Bundesamt. H. 357:289

    Google Scholar 

  • OECD 1996. Consensus Document on General Information concerning the Biosafety of Crop Plants Made Virus Resistant through Coat Protein Gene-Mediated Protection. In: Environment Directorate OECD/GD(96)162. Environmental Health and Safety Publications. Series on Harmonization of Regulatory Oversight in Biotechnology, No. 5, Paris, 33 S.

    Google Scholar 

  • Pang SZ, Jan FJ, Gonsalves D. 1997. Nontarget DNA sequences reduce the trangene length necessary for RNA-mediated tospovirus resistance in transgenic plants. Proc. Natl. Acad. Sci. USA 94:8261–8266

    Article  CAS  Google Scholar 

  • Qui W, Moyer JW. 1999. Tomato Spotted Wilt Tospovirus Adapts to the TSWV N Gene-Derived Resistance by Genome Reassortment. Phytopathology 89:575–582

    Article  Google Scholar 

  • Raybould AF, Jones AE, Alexander M, Pallett D, Thurston MI, Cooper JI, Wilkinson MJ, Gray AJ. 2000. The potential for ecological release following introgression of virus-resistance transgenes into natural populations of wild Brassica species. In: Fairbairn C, Scoles G, McHughen A. (eds.) Proceedings of the 6th International Symposium on The Biosafety of Genetically Modified Organisms, July 2000, Saskatoon, Canada, 105–111

    Google Scholar 

  • Rubio T, Borja M, Scholthof H B, Jackson A O. 1999. Recombination with Host Transgenes and Effects on Virus Evolution: An Overview and Opinion. MPMI 12:2:87–92

    Article  CAS  Google Scholar 

  • Schütte G. (1998). Risiken der Elnführung transgener, virusresistenter Pflanzen. In: Nutzung der Gentechnik im Agrarsektor der USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit. Studie im Auftrag des Umweltbundesamtes, Berlin. UBA-Texte 47/98:509–560

    Google Scholar 

  • Smith H. 2000. at ESF/AIGM (European Science Foundation) The wider environmental implications of genetically modified plants. Workshop, January 2000, Cambridge, UK

    Google Scholar 

  • Tepfer M, Balázs E. 1997. Concluding remarks and recommendations. In: Tepfer M, Balázs E. (eds.) Virus-resistant transgenic plants: Potential ecological impact, Berlin, 121–124

    Google Scholar 

  • Teycheney PY, Aaziz R, Salánki K, Balázs E, Jacquemond M, Tepfer M. 2000. Potential risks associated wirth recombination in transgenic plants expressing cucumber mosaic virus sequences. In: Fairbairn C, Scoles G, McHughen A. (eds.) Proceedings of the 6th International Symposium on The Biosafety of Genetically Modified Organisms, July 2000, Saskatoon, Canada, 97–104

    Google Scholar 

  • UBA (Umweltbundesamt) 1999. Beitrag der Biotechnologie zu einer dauerhaft umweltgerechten Entwicklung. Umweltbundesamt, Berlin, UBA-Texte 1/99, 100–105

    Google Scholar 

  • USDA (United States Department of Agriculture) 1999. Biotechnology Risk Assessment Research Grants Program Home Page. http://www.reeusda.gov/crgam/biotechrisk.biotech.htm

  • Varrelmann M, Maiss E. 2000. Mutations in the coat protein gene of Plum Pox Virus suppress particle assembly, heterologous encapsidation and complementation in transgenic plants of Nicotiana benthamiana. Journal of General Virology 81

    Google Scholar 

  • Wintermantel WM, Király L, Bourque J, Schoelz JE. 1997. Recombination between Cauliflower Mosaik Virus and transgenic plants that contain CaMV transgenes: Influence of selection pressure on isolation of recombinants. In: Tepfer M, Balázs E. (eds.) Virus-resistant transgenic plants: Potential ecological impact, Berlin, 66–67

    Google Scholar 

Literatur

  • Aken J van, Heidenreich B. 1998. Freisetzungen transgener Pflanzen und Mikroorganismen, In: Nutzung der Gentechnik im Agrarsektor des USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit, Studie für das Umweltbundesamt, UBA-Texte 47/98, Berlin, 73–120

    Google Scholar 

  • Alia, Hayashi H, Mustardy L, Deshnium P, Ida M, Murata N. 1997. Transformation of Arabodipsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and tolerance to salt and cold stress. The Plant Journal 12:133–142

    Article  Google Scholar 

  • Alia, Hayahshi H, Sakamoto A, Murata N. 1998. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. The Plant Journal 16(2):155–161

    Article  CAS  Google Scholar 

  • Ammann K, Jacot Y, Rufener Al Mazyad P. 1999. Field release of transgenic crop in Switzerland-An ecological risk assessment, of vertical gene flow. http://www.bats.ch/data/english/k3titel.html

  • Apse MP, Aharon GS, Snedden WA, Blumwald E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ Antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  Google Scholar 

  • Barinaga M. 1997. Making plants aluminium tolerant. Science 276:1479

    Article  Google Scholar 

  • Brunold C. 1996. Einführung. In: Brunold C, Rüegsegger A, Brändie R. (eds.). Streß in Pflanzen — Ökologie, Physiologie, Biochemie, Molekularbiologie. P. Haupt. Bern, Stuttgart, Wien, 71–88

    Google Scholar 

  • Büchting A, Mechelke W, Schmidt W. 1986. Geringen Aufwand erfordernde Sorten (Low-external-imput varieties) in Gegenwart und Zukunft In: Vogtmann H. et al. (eds.) Ökolandbau — eine weltweite Notwendigkeit, Karlsruhe, 199–219

    Google Scholar 

  • De la Fuente JM, Ramirez-Rordriguez V, Cabrera-Ponce JL, Herrera-Estrella L. 1997. Aluminium tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    Article  Google Scholar 

  • Devaux A, Estrada N, Carrasco E, Silva MA. 1994. Experience in field testing of transgenic potatoes with an added antifreeze gene in Bolivia. In: Jones DD. (ed.) Proc. 3rd Intern. Symp. on the Biosafety Results of Field Tests of Genetically Modified Plants and Microorganisms, Univ. Calif., 13-16 Nov. Monterey, 89–98

    Google Scholar 

  • EPBN (European Plant Biotechnology Network) 1999, EPBN NewsBrief-10(3)

    Google Scholar 

  • Hasegawa M, Bressan R. 2000. The dawn of plant salt tolerance genetics. Trends in Plant Science 5(8):317–319.

    Article  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. 1998. Arabidopsis CBF1 overexpression induced COR genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  Google Scholar 

  • James C. 1999. Global preview of commercialized transgenic crops. ISAAA Briefs 12/99, 1–8

    Google Scholar 

  • Janssen MJJ, Neumann IF, Froiddevaux I. 1986. Ideotypen, die einen geringen Aufwand erfordern (low-input-Ideotypes). In: Vogtmann H. et al. (eds.) Ökolandbau — eine weltweite Notwendigkeit, Karlsruhe, 221–236

    Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17:287–291

    Article  CAS  Google Scholar 

  • Kinzel H. 1982. Pflanzenökologie und Mineralstoffwechsel, E. Ulmer, Stuttgart, 534 S.

    Google Scholar 

  • Kreeb KH. 1996. Salzstreß. In: Brunold C, Rüegsegger A, Brändie R (eds.) Streß in Pflanzen — Ökologie, Physiologie, Biochemie, Molekularbiologie. P. Haupt. Bern, Stuttgart, Wien, 149–172

    Google Scholar 

  • Leisinger KM. 1999. Die sechste Milliarde: Weltbevölkerung und nachhaltige Entwicklung, München, Beck

    Google Scholar 

  • Murakami Y, Tsuyuma M, Kobayashi Y, Kodama H, Iba K. 2000. Trienoic fatty acids and plant tolerance of high temperature. Science 287:476–479.

    Article  CAS  Google Scholar 

  • RKI (Robert Koch Institut) 1999. Freigesetzte Organismen in den EU-Mitgliedstaaten, http://www.rki.de

  • Sreenivasulu N, Ramanjulu S, Ramachandra-Kini K, Prakash HS, Shekar-Shetty H, Savithri HS, Sudhakar C. 1999. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Science 141:1–9

    Article  CAS  Google Scholar 

  • SRU (Der Rat von Sachverständigen für Umweltfragen) 1998. Umweltgutachten 1998, Metzler Poeschel, Stuttgart

    Google Scholar 

  • Stamp P. 1996. Niedrige Temperaturen. In: Brunold C, Rüegsegger A, Brändie R (eds.) Streß in Pflanzen — Ökologie, Physiologie, Biochemie, Molekularbiologie. P. Haupt. Bern, Stuttgart, Wien, 71–88

    Google Scholar 

  • UCS (Union of Concerned Scientists) 1993. Perils amidst the promise — Ecological risk of transgenic crop in a global market (by Rissler J, Mellon M.) Caqmbridge, MA, 92 S.

    Google Scholar 

  • Zhu B, Su J, Chang M, Verna DPS, Fan Y-L, Wu R. 1998. Overexpression of a ▲1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Science 139:41–48

    Article  CAS  Google Scholar 

Literatur

  • Alexander DE. 1988. Breeding Special Nutritional and Industrial Types. In: Sprague GF, Dudley JW. (eds.) Corn and Corn Improvement. Third Edition. Agronomy 18:869–880

    Google Scholar 

  • Anonym 1996. Biotechnologie in Nahrungsmitteln und Getränken. ZFL 47:12–15

    Google Scholar 

  • APHIS (Animal and Plant Health Inspection Service, USA) 1994. Response to Calgene Petition 94-090-01p for Determination of Nonregulated Status for Laurate Canola Lines. Environmental Assessment and Finding of No Significant Impact. October 1994

    Google Scholar 

  • APHIS 1997. DuPont Petition 97-008-01p for Determination of Nonregulated Status for Transgenic high Oleic Acid Soybean Sublines G94-1, G94-19, and G-168. Environmental Assessment and Finding of No Significant Impact. May 1997

    Google Scholar 

  • APHIS 2000. USDA Field Test Releases Database for the US. http://www.nbiap.vt.edu/cfdocs/filedtests1.cdm

  • BBA (Biologische Bundesanstalt tur Land-und Forstwirtschaft, Braunschweig) 2000. Gentechnik-Datenbank. Tabelle 3: Anträge zur Freisetzung von GVO: eingeführte Eigenschaften. http://www.bba.de/gentech/tab3.htm

  • Brower V. 1998. Nutraceuticals: Poised for a healthy slice of the health care market?. Nature Biotechnology 16:728–731

    Article  CAS  Google Scholar 

  • Büchs W. 1993. Investigation on the occurence of pest insects in oil seed rape as a basis for the development of action thresholds, concepts for prognosis and strategies for the reduction of the input of insecticides. IOBC-WPRS Bulletin 16(9):216–234

    Google Scholar 

  • Büchs W. 1998. Tierische Schädlinge und ihre Antagonisten in Rapskulturen — Biologie, Epidemiologie, natürliche Regulation und chemische Bekämpfung in der 100-jährigen Geschichte der Biologischen Bundesanstalt fur Land-und Forstwirtschaft. In: Mitteilungen aus der Biologischen Bundesanstalt für Land-und Forstwirtschaft, Berlin-Dahlem, 100 Jahre Pflanzenschutzforschung — Krankheiten, Schädlinge und Unkräuter im Raps, Heft 340: 86–124

    Google Scholar 

  • Briat JF. 1999. Plant ferritin and human iron deficiency. Nature Biotechnology 17:621

    Article  CAS  Google Scholar 

  • Burkhardt PK, Beyer P, Wünn J, Klöti A, Armstrong GA, Schledz M, von Lintig J, Potrykus I. 1997. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoen synthase accumulates phytoen, a key intermediate of provitamin A biosynthesis. The Plant Journal 11(5): 1071–1078

    Article  CAS  Google Scholar 

  • Dicke FF, Guthrie WD. 1988. The most important corn insects. In: Sprague GF, Dudley JW. (eds.) Corn and Corn Improvement. Third Edition. Agronomy 18:767–867

    Google Scholar 

  • EPBN (European Plant Biotechnology Network) 1999. Rare Waxy Wheat Breeding Line Released. EPBN e-mail NewsBrief-11, 19/Nov/99

    Google Scholar 

  • Faist V, Elmadfa I. 1992. Einfluß verschiedener n6/n3-Fettsäurerelationen auf Struktur-und Funktionsparameter der Lebermitochondrien der Ratte bei ausreichender und defizitärer Vitamin E-Versorgung. Fat Sci Technol 94(11):518–523

    Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F. 1999. Iron fortification of rice seeds by the soybean ferritin gene. Nature Biotechnology 17:282–286

    Article  CAS  Google Scholar 

  • Heinz E. 1999. Prof. Dr. Ernst Heinz. Universität Hamburg, Institut für Allgemeine Botanik, Ohnhorststr. 18, 22609 Hamburg

    Google Scholar 

  • Hüsing B, Menrad K, Menrad M, Scheef G. 1999. Functional Food — Funktionelle Lebensmittel. Gutachten im Auftrag des TAB (Büro fur Technikfolgen-Abschätzung beim Bundestag). TAB-Hintergrundpapier Nr. 4, September 1999

    Google Scholar 

  • Jany KD, Greiner R. 1998. Gentechnik und Lebensmittel. Berichte der Bundesforschungsanstalt für Ernährung, http://dainet.de/bfe/deutsch/janybericht/janyberi.htm

  • Kurzer MS. 1993. Planning and Interpreting „Designer Food“ Feeding Studies. Food Technology April 1993:80–84

    Google Scholar 

  • Lohr JT. 1999. High Iron Rice. Information Systems for Biotechnology (ISB) News Report April 1999. Newsreport@gophisb.biochem.vt.edu

    Google Scholar 

  • Martini N, Schell J, Abbadi A, Spener F, Töpfer R. 1999. Rapsöl mit mittelkettigen Fettsäuren. In: Brauer D, Röbbelen G, Töpfer R. (eds.) BioEngineering für Rapssorten nach Maß — Ergebnisse eines BMBF-Forschungsverbunds. Vorträge für Pflanzenzüchtung 45:133–154

    Google Scholar 

  • OECD (Organisation for Economic Co-operation and Development) 2000. Report of the Task Force for the Safety of Novel Food and Feed. C(2000)86/ADDl, 17-May-2000, http://www.oecd.org/subject/biotech/index.htm

  • POST (Parliamentary Office of Science and Technology) 1998. Genetically Modified Foods. Benefits and Risks, Regulation and Public Acceptance. POST-Report May 1998, London

    Google Scholar 

  • RKI (Robert-Koch-Institut, Berlin) 1999 Freigesetzte Organismen in den EU-Mitgliedsstaaten. http://www.rki.de/GENTEC/FREISETZUNGEN/EU-GMO.HTM

  • Roozendaal van G. 1996. Enhancing the nutritional qualities of crops: A second Green Revolution?. Biotechnology and Development Monitor 29:12–15

    Google Scholar 

  • Schmidt H, Sperling P, Heinz E. 1999. Transgener Hoch-Ölsäure-Raps. In: Brauer D, Röbbelen G, Töpfer R. (eds.) BioEngineering für Rapssorten nach Maß — Ergebnisse eines BMBF-Forschungsverbunds. Vorträge für Pflanzenzüchtung 45:115–131

    Google Scholar 

  • Shintani D, Dellapenna D. 1998. Elevating the Vitamin E Content of Plants Through Metabolic Engineering. Science 282:2098–2100

    Article  CAS  Google Scholar 

  • SRU (Der Rat der Sachverständigen für Umweltfragen) 1998. Umweltgutachten 1998. Metzler-Poeschel, Stuttgart

    Google Scholar 

  • Stirn S. 1998. Toxizität transgener Pflanzen. In: Nutzung der Gentechnik im Agrarsektor der USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit, Studie im Auftrag des Umweltbundesamtes, Berlin, UBA-Texte 47/89, 653–676

    Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I. 2000. Engineering the Provitamin A (ß-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science 287:303–305

    Article  CAS  Google Scholar 

Literatur

  • Beard CW, Mason PW. 1998. Out on the farm with DNA vaccines. Nature Biotechnology 16:1325–1328

    Article  CAS  Google Scholar 

  • Borrebaeck CAK. 1999. Human monoclonal antibodies: The emperor’s new clothes? Nature Biotechnology 17:621

    Article  CAS  Google Scholar 

  • Bramm A, Eggersdorfer M, Frese L, Höppner F, Menge-Hartmann U, Rühl G, Schittenhelm S. 1996. Nachwachsende Rohstoffe für die industrielle Verarbeitung. In: Linck G et al., (eds.) Nachhaltige Land-und Forstwirtschaft. Expertisen Berlin 1996: 821–850

    Google Scholar 

  • Der Spiegel 1998. Impfbananen im Visir 41:244–246

    Google Scholar 

  • Falco SC, Guida T, Locke M, Mauvais J, Sanders C, Ward RT, Webber P. 1995. Transgenic Canola and Soybean Seeds with increased Lysine. Biotechnology 13:577–581

    Article  CAS  Google Scholar 

  • Franke W. 1992. Nutzpflanzenkunde. Georg Thieme Verlag.

    Google Scholar 

  • Hilbeck A. 2000. Tri-trophic effects of Bt corn. ESF/AIGM (European Science Foundation) The environmental implications of genetically modified plants with insect resistance genes. Workshop, September 2000, Bern, Switzerland

    Google Scholar 

  • House of Lords 1998. Second report: EC Regulation of Genetic Modification in Agriculture. European Communities Committee Publications, Großbritannien

    Google Scholar 

  • Lee M, Lenman M, Banas A, Bafor M, Singh S, Schweizer M, Nilsson R, Liljenberg C, Dahlquist A, Gummeson P-O, Sjödahl S, Green A, Stymne S. 1998. Identification of Non-Heme Diiron Proteins that catalyze Triple Bond and Epoxy Group Formatioa Science 280: 917

    Article  Google Scholar 

  • Linder R. 1995. Seedbank Dynamics in Brassica: A Targeted Approach to Risk Assessment. at: Environmental Impact of Genetically-Modified Crops. Workshop at ITE Monks Wood, 28-30 November 1995

    Google Scholar 

  • Liu M. 1998. Genes as Vaccines. http://binas.unido.org./binas/Conference/Liu.htm

    Google Scholar 

  • Maliyakal EJ, Keller G. 1996. Metabolic pathway engineering in cotton: Biosynthesis of polyhydroxybutyrate in fiber cells. Proc. Natl. Acad. Sci. USA 93:12768–12773

    Article  Google Scholar 

  • Martini N, Schell J, Abbadi A, Spener F, Töpfer R. 1999. Rapsöl mit mittelkettingen Fettsäuren. In: Brauer D, Röbbelen G, Töpfer R. (eds). BioEngineering für Rapssorten nach Maß-Ergebnisse eines BMBF-Forschungsverbunds. Vorträge für Pflanzenzüchtung 45:133–154

    Google Scholar 

  • McCormick AA, Kumagai MH, Hanley K, Turpen TH, Hakim I, Grill LK, Tusé D, Levy S, Levy R. 1999. Rapid Produktion of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. Proc. Natl. Acad. Sci. USA 96:703–708

    Article  CAS  Google Scholar 

  • McGraw LC. 1998. Transgenic alfalfa yields new products. Agriculture Research. April 1998: http://www.ars.usda.gov/is/AR/archive/apr98/alfaO498.htm

  • Miele L. 1997. Plants as bioreactors for biopharmaceuticals: regulatory considerations. TIBTECH 15:45–50

    Article  CAS  Google Scholar 

  • Poirier Y. 1999. Green chemistry yields a better plastic. Nature Biotechnology 17:960–961

    Article  CAS  Google Scholar 

  • POST (Paliament Office of Science and Technology, Großbritannien) 1998. Genetically Modified Foods-Benefits and Risks, Regulation and Puplic Acceptance. POST, London. Post Report May 1998

    Google Scholar 

  • Prakash 1996. Edible vaccines and antibody producing plants. Are edible vaccines a solution? Biotechnology and Development Monitor. 27 (June): 10–14

    Google Scholar 

  • RKI (Robert Koch Institut) 2000. Freisetzungen in der BRD. (Stand: 18.05.2000) http://www.rki.de/GENTEC/FREISETZUNGEN/FRElSETZ_D.HTM

  • Saxena D, Flores S, Stotzky G. 1999. Insecticidal toxin in root exudates from B.t. corn. Nature 402:480

    CAS  Google Scholar 

  • Schloter M, Lehmann S, Zelles L, Lützow von M, Munch JC, Smalla C. 2000. Auswirkungen transgener Kartoffeln mit veränderter Stärkezusammensetung auf die strukturelle und fimktionelle Diversität von Bodenmikroorganismen. Proceedings zum BMBF-Statusseminar „Biologische Sicherheitsforschung bei Freilandversuchen mit transgenen Organismen und anbaubegleitendes Monitoring“ 29-30.6 1999, Braunschweig: 129–134

    Google Scholar 

  • Schmitt J, Linder C.R. 1994. Will Escaped transgenes lead to ecological release?. Molecular Ecology 3:71–74

    Article  Google Scholar 

  • Sederoff R. 1999. Building better trees with antisense. Nature Biotechnology 17:750–751

    Article  CAS  Google Scholar 

  • Slater S, Mitsky T A, Houmiel K L, Hao M, Reiser S E, Taylor N B, Tran M, Valentin H E, Rodriguez D J, Stone D A, Padgette S R, Kishore G, Gruys K J. 1999. Metabolic engineering of Arabdopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nature Biotechnology 17:1011

    Article  CAS  Google Scholar 

  • Staub J M, Garcia B, Graves J, Hajdukiewicz PTJ, Hunter P, Nehra N, Paradkar V, Schlitter M, Carroll J A, Spatola L, Ward D, Ye G, Russell D A. 2000. High-yield production of a human therapeutic protein in tobacco chloroplasts. Nature Biotechnology 18:333–338

    Article  CAS  Google Scholar 

  • Stotzky G. 2000. Release, persistance and biologiclal activity of Bt toxins in soil. ESF/AIGM (European Science Foundation) The environmental implications of genetically modified plants with insect resistance genes. Workshop, September 2000, Bern, Switzerland

    Google Scholar 

  • UBA (Umweltbundesamt, Berlin) 1999 (ed.) Beitrag der Biotechnologie zu einer dauerhaft umweltgerechten Entwicklung. UBA-Texte 1/99:20–90

    Google Scholar 

  • Ulrich A. 2000. at ESF/AIGM (European Science Foundation) The wider environmental implications of genetically modified plants. Workshop, January 2000, Cambridge, UK

    Google Scholar 

  • USDA (U.S. Department of Agriculture) / APHIS (Animal and Plant Health Inspection Service) 1997. USDA/APHIS Permit 96-355-01r for Field Testing Genetically Engineered Rice Plants. Environmental Assessment and Finding of No Significant Impact. USDA/APHIS 1997

    Google Scholar 

  • Wintzer D, Fürniß B, Klein-Vielhauer S, Leible L, Nieke E, Rösch Ch, Tangen H. 1993. Technologiefolgenabschätzung zum Thema Nachwachsende Rohstoffe. Schriftenreihe des Bundesministeriums für Ernährung, Landwirtschaft und Forsten, Landwirtschaftsverlag Münster

    Google Scholar 

Literatur

  • Ignoffo CM, Garcia C. 1996. Rate of larval lysis and yield and activity of inclusion bodies harvested from Trichoplusia ni larvae fed a wild or recombinant strain of the nuclear polyhydrosis virus of Autographa californica. Journal of Invertebrate Pathology 68:196–198

    Article  Google Scholar 

  • Jaques RP. 1964. The Persistence of a Nuclear-Polyhedrosis Virus in Soil. Journal of Invertebrate Pathology 6:251–254

    Google Scholar 

  • Gröner A. 1986. Specifity and Safety of Baculoviruses. In: Granados RR, Federici BA. (eds.) The Biology of Baculoviruses Vol. 1 Biological Properties and Molecular Biology. Baca Raton. Florida

    Google Scholar 

  • McNitt L, Espelie KE, Miller LK. 1995. Assessing the Safety of Toxin-Producing Baculovirus Biopesticides to a Nontarget Predator, the Social Wasp Polistes metricus Say. Biological Control 5:267–278

    Article  Google Scholar 

  • Riede M. 1998. Folgen des Einsatzes transgener Baculoviren. In: Nutzung der Gentechnik im Agrarsektor der USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit. Studie im Auftrag des Umweltbundesamtes, Berlin. UBA-Texte 47/98, 561–630

    Google Scholar 

  • Schneider RE. 1996. OPP Scientific Position on American Cynamid Company’s 1/4/96 Notification of Small Scale Field Testing of a Genetically Engineered Baculovirus 16 S.

    Google Scholar 

  • Traynor P. 1997. News and Notes — Engineered Baculoviruses. ISB News Report, January 1997, Internet: http://www.nbiap.vt.edu/news/1997/news97.jan.html

    Google Scholar 

  • UBA (Umweltbundesamt) 1999. Beitrag der Biotechnologie zu einer dauerhaft umweltgerechten Entwicklung. Umweltbundesamt, Berlin. UBA-Texte 1/99:112–113

    Google Scholar 

  • USDA (United States Department of Agriculture) 1998. Modeling the Fate of Genetically Engineered Baculoviruses. http://www.reeusda.gov/crgam/biotechrisk/biot98nt.h

  • USDA 1999. Biotechnology Risk Assessment Research Grants Program Home Page. http://www.reeusda.gov/crgam/biotechrisk.biotech.htm

  • Williamson M. 1991. Biocontrol Risks. Nature 353:394

    Article  CAS  Google Scholar 

  • Wolters V. 1993. Bodenökologische Aspekte der Freisetzung gentechnisch veränderter Organismen. In: Bartsch D, Sukopp H. (eds.). Ermittlung und Bewertung des ökologischen Risikos beim Umgang mit gentechnisch veränderten Organismen, UBA-Texte 20/93, 186–192

    Google Scholar 

  • Wood HA. 1996. Genetically Enhanced Baculovirus Insecticides. In: Gunasekaran M, Weber DJ. (eds.) Molecular Biology of the Biological Control of Pests and Diseases of Plants, CRC Press, Inc., Boca Raton, Florida

    Google Scholar 

Literatur

  • Aken J van, Heidenreich B. 1998. Freisetzungen transgener Pflanzen und Mikroorganismen. In: Nutzung der Gentechnik im Agrarsektor der USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit. Studie im Auftrag des Umweltbundesamtes, Berlin. UBA-Texte 47/98: 73–120

    Google Scholar 

  • Bej AK, Perlin M, Atlas RM. 1991. Effect of Introducing Genetically Engineered Microorganisms on Soil Microbial Community Diversity. FEMS Microbiology Ecology 86:169–176

    Article  Google Scholar 

  • Broembsen AF. 1989. Invasions of Natural Ecosystems by Plant Pathogens. In: Drake JA. et al. (eds.) Biological Invasions: A Global Perspective, London, 77–83

    Google Scholar 

  • Carroll H, Moenne-Loccoz Y, Dowling DN, O’Gara F. 1995. Mutational Disruption of the Biosynthesis Genes Coding for the Antifungal Metabolite 2,4-Diacetylphloroglucinol Does Not Influence the Ecological Fitness of Pseudomonas fluorescens F113 in the Rhizosphere of Sugarbeets. Applied and Environmental Microbiology 61(8):3002–3007

    CAS  Google Scholar 

  • Donegan K, Fieland V, Fowles N, Ganio L, Seidler R. 1992. Efficacy of Burning, Tillage, and Biocides in Controlling Bacteria Released at Field Sites and Effects on Indigenous Bacteria and Fungi. Applied and Environmental Microbiology 58(4): 1207–1214

    CAS  Google Scholar 

  • Doyle, JD, Short KA, Stotzky G, King RJ, Seidler RJ, Olson RH. 1991. Ecologically Significant Effects of Pseudomonas putida PPO301(pRO103), Genetically Engineered to Degrade 2,4-Dichlorophenoxyacetate, on Microbial Populations and Processes in Soil. Canadian Journal of Microbiology 37:682–691

    Article  CAS  Google Scholar 

  • England LS, Lee H, Trevors JT. 1993. Recombinant and Wild-type Pseudomonas aureofaciens Strains in Soil: Survival, Respiratory Activity and Effects on Nodulation of Whitebeen Phaseolus vulgaris L. by Rhizobium Species. Molecular Ecology 2:303–313

    Article  Google Scholar 

  • Heidenreich B. 1999. Analyse und Bewertung der Risikoforschung zur Freisetzung gentechnisch veränderter Mikroorganismen: 78–89. Dissertation FB Biologie, Hamburg

    Google Scholar 

  • Hirsch P. 1996. Pollution Dynamics of Indigenous and Genetically Modified Rhizobia in the Field. New Phytologist 133:159–171

    Article  Google Scholar 

  • Hirsch PR, Spokes JD. 1994. Survival and Dispersion of Genetically Modified Rhizobia in the Field and Genetic Interactions with Native Strains. FEMS Microbiology Ecology 15:147–160

    Article  CAS  Google Scholar 

  • Mundt CC. 1995. Models from Plant Pathology on the Movement and Fate of New Genotypes of Microorganisms in the Environment. Annual Review of Phytopathology 33:467–488

    Article  CAS  Google Scholar 

  • Pimentel D. 1986. Biological Invasions of Plants and Animals in Agriculture and Forestry. In: Mooney HA, Drake JA. (eds.) Ecology of Biological Invasions of North America and Hawaii. Ecological Studies 58:149–162, New York

    Google Scholar 

  • Ramos JL, Anderson P, Jensen LB, Ramos C, Ronchel MC, Díaz E, Timmis KN, Molin S. 1995. Suicide Microbes on the Loose. Biotechnology 13:35–37

    Article  CAS  Google Scholar 

  • Riede M. 1998. Folgen des Einsatzes transgener Baculoviren. In: Nutzung der Gentechnik im Agrarsektor der USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit. Studie im Auftrag des Umweltbundesamtes, Berlin. UBA-Texte 47/98, 561–630

    Google Scholar 

  • Sharpies F. 1991. Ecological Aspects of Hazard Identification for Environmental Uses of Engineered Organisms. In: Levin MA, Strauss HS. (eds.) Risk Assessment in Genetic Engineering, New York, 18–31

    Google Scholar 

  • UBA (Umweltbundesamt) 1999. Beitrag der Biotechnologie zu einer dauerhaft umweltgerechten Entwicklung. Umweltbundesamt, Berlin. UBA-Texte 1/99, 112–113

    Google Scholar 

  • USDA (United States Department of Agriculture) 1998. Modeling the Fate of Genetically Engineered Baculoviruses. http://www.reeusda.gov/crgam/biotechrisk/biot98nt.h

  • USDA 1999. Biotechnology Risk Assessment Research Grants Program Home Page. http://www.reeusda.gov/crgam/biotechrisk.biotech.htm

  • Weir SC, Lee H, Trevors JT. 1994. Survival and Respiratory Activity of Genetically Engineered Pseudomonas spp. Exposed to Antimicrobial Agents in Broth and Soil. Microbial Releases 2:239–245

    CAS  Google Scholar 

  • Yarwood CE. 1983. History of Plant Pathogen Introductions. In: Wilson CL, Graham C. (eds.) Exotic Plant Pests and North American Agriculture: 39–63, London

    Google Scholar 

Literatur

  • Fink A. 1989. Dünger und Düngung. Weinheim

    Google Scholar 

  • Heichel GH, Barnes DK. 1984. Opportunities for Meeting Crop Nitrogen Needs from Symbiotic Nitrogen Fixation, in ASA, CSSA, SSSA (eds.) Organic Farming — Current Technology and Its Role in a Sustainable Agriculture: 49–59. Madison

    Google Scholar 

  • Heidenreich B, 1998. Der Einfluß transgener Rhizobien auf den Stickstoffkreislauf. In: Nutzung der Gentechnik im Agrarsektor der USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit. UBA-Texte 47/98, Berlin, 677–697

    Google Scholar 

  • Poppinga O. 1994. Probleme schaffen, wo es keine gibt — Die Denunzierung einer stickstoffsammelnden Pflanzenfamilie durch die Agrarwissenschaft. in: Agrarbündnis (ed.) Landwirtschaft 1994 — Der kritische Agrarbericht: 242–247, Bonn

    Google Scholar 

  • UBA (Umweltbundesamt) 1999. Beitrag der Biotechnologie zu einer dauerhaft umweltgerechten Entwicklung. UBA-Texte 1/99, Berlin, 113–115

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Schütte, G., Schmitz, G., Beusmann, V., Husemann, M., Oldendorf, S., Stirn, S. (2001). Wissensstand zu den Auswirkungen spezieller gentechnisch vermittelter Eigenschaften. In: Schütte, G., Stirn, S., Beusmann, V. (eds) Transgene Nutzpflanzen. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8282-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8282-8_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6475-5

  • Online ISBN: 978-3-0348-8282-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics