Skip to main content

Stand der Sicherheitsforschung und Risikoabschätzung zu allgemeinen Risiken

  • Chapter
Transgene Nutzpflanzen
  • 103 Accesses

Zusammenfassung

Zur Zeit sind in der EU nur einige gentechnisch veränderte Pflanzen auf dem Markt, die als Lebens- oder Futtermittel genutzt werden. Dazu zählen vor allem insekten-resistenter Mais, sowie Sojabohnen und Raps mit Herbizidresistenzgenen (RKI, 1999). Berücksichtigt man auch die gentechnisch veränderten Pflanzen, die in den USA und Kanada in Verkehr gebracht wurden, so erweitert sich das Spektrum um Tomaten mit verändertem Reifeprozeß, insektenresistente Tomaten und Kartoffeln, virusresistente Kartoffeln, Kürbisse und Papaya, herbizidresistente Zuckerrüben und Reis sowie Raps und Sojabohnen mit verändertem Ölprofil (APHIS, 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ames BN, Profet M, Gold LS. 1990. Nature’s Chemicals and Synthetic Chemicals: Comparative Toxicology. Proc. Nat. Acad. Sci. 87:7782–7786

    CAS  Google Scholar 

  • Anonym 1999. Bt-maize and non-target organisms. Compilation of available data. Novartis, Basel

    Google Scholar 

  • APHIS (Animal and Plant Health Inspection Service) 2000. List of Crops No Longer Regulated by USDA/APHIS. http://www.aphis.usda.gov/biotech/notreg.html

  • Brake J, Vlachos D. 1998. Evaluation of transgenic event 176 Bt-corn in broiler chickens. Poultry Science 77(5):648–653

    CAS  Google Scholar 

  • Burke D. 1999. No GM conspiracy. Nature 401:640–641

    CAS  Google Scholar 

  • Carlson GL, Li Buk p., Olsen WA. 1983. A bean alpha-amylase inhibitor formulation (starch blocker) is ineffective in man. Science 219:393–395

    CAS  Google Scholar 

  • Conner T. 1993. Food Safety Issues Relating to Genetic Engineering of Crop Plants. Agricultural Science May, 36-41

    Google Scholar 

  • Enserink M. 1999. Preliminary Data Touch Off Genetic Food Fight. Science 283:1094–1095

    CAS  Google Scholar 

  • Ewen SWB, Pusztai A. 1999. Effects of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine. The Lancet 354:1353–1354

    CAS  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) 1999. The Codex Alimentarius Commission Approves Standards for Organic Foods and Sets up Taskforce on Standards for Foods Derived from Biotechnology, Animal Feeding and Fruit Juices. http://www.foa.org/waicent/ois/press_ne/presseng/1999/pren9941.htm

  • Hamill JD, Robins RJ, Parr AJ, Evans DM, Furze JM. 1990. Over-Expressing a Yeast Ornithine Decarboxylase Gene in Transgenic Roots of Nicotiana rustica can Lead to Enhanced Nicotine Accumulation. Plant Molecular Biology 15:27–38

    CAS  Google Scholar 

  • House of Lords 1998. Second Report: EC Regulation of Genetic Modification in Agriculture. European Communities Committee Publications, Großbritannien

    Google Scholar 

  • Jany KD. 1999. Die Affäre Pusztai-Haben genmanipulierte Kartoffeln schottische Ratten geschrumpft? http://dainet.de/bfe/deutsch/pusztai.htm

  • Kearns P, Mayers P. 1999. Substantial equivalence is a useful tool. Nature 401:640

    CAS  Google Scholar 

  • Kuiper HA, Noteborn HPJ. 1996. Food Safety Assessment of Transgenic Insect-Resistant Bt Tomatoes. Food Safety Evaluation: 50–57

    Google Scholar 

  • Kuiper HA, Noteborn HPJN, Peijnenburg AACM. 1999. Adequacy of methods for testing the safety of genetically modiefied food. The Lancet 354:1315–1316

    CAS  Google Scholar 

  • Kuiper HA. 1998. The pros and cons of classical and analytical toxicity testing of novel food. In: Report of the OECD Workshop on the Toxicological and Nutritional Testing of Novel Food. SG/ICGB(98)1, 29

    Google Scholar 

  • Messéan A. 1998. Presentation of Case Studies in France. In: Report of the OECD Workshop on the Toxicological and Nutritional Testing of Novel Food. SG/ICGB(98)1, 31

    Google Scholar 

  • Millstone E, Brunner E, Mayer S. 1999. Beyond’ substantial equivalence’. Nature 401:525–526

    CAS  Google Scholar 

  • Noteborn HPJM. 1998. Chemical fingerprinting and in vitro toxicological profiling for the safety evaluation of transgenic crops. In: Report of the OECD Workshop on the Toxicological and Nutritional Testing of Novel Food. SG/ICGB(98)1, 32–33

    Google Scholar 

  • OECD (Organisation for Economic Co-operation and Development) 1996. Report of the Working Group Sessions. In: Food Safety Evaluation. OECD, Paris

    Google Scholar 

  • OECD 1998. Report of the OECD Workshop on the Toxicological and Nutritional Testing of Novel Food. SG/ICGB(98)1

    Google Scholar 

  • OECD 1999a. Recent statements by Ministers or Heads of Government concerning OECD work on Biotechnology. Communiqué of the G8 Heads of Government meeting at Cologne, June 1999. http://www.oecd.org/ehs/mandate.htm

  • OECD 1999b. Food safety: protection or protectism? OECD Observer March 01, 1999

    Google Scholar 

  • OECD 2000a. Report of the Task Force for the Safety of Novel Food and Feed. C(2000)86/ADDl, 17-May-2000, http://www.oecd.org/subject/biotech/index.htm

  • OECD 2000b. Report of the Working Group on Harmonisation of Regulatory Oversight in Biotechnology. C(2000)86/ADD2, 25-May-2000, http://www.oecd.org/subject/biotech/index.htm

  • Pascal G. 1998. General Safety Issues. In: Report of the OECD Workshop on the Toxicological and Nutritional Testing of Novel Food. SG/ICGB(98)1, 34

    Google Scholar 

  • Pusztai A, Bardocz GG, Alonso R, Chrispeels MJ, Schroeder HE, Tabe LM, Higgins TJ. 1999. Expression of the insecticidal bean alpha-amylase inhibitor transgene has minimal detrimental effect on the nutritional value of peas fed to rats at 30% of the diet. Journal of Nutrition 129(8):597–1603

    Google Scholar 

  • Redenbaugh K, Hiatt W, Martineau B, Lindemann J, Emlay D. 1994. Aminoglycoside-3′-Phosphotransferase II (APH(3′)II): Review of ist Safety and Use in the Production of Genetically Engineered Plants. Food Biotechnology 8:137–165

    CAS  Google Scholar 

  • RKI (Robert-Koch-Institut) 1999. Liste der inverkehrgebrachten Produkte. http://rki.de/GENTEC/INVERKEHR/INVKLIST.HTM (Stand: 1999)

  • RKI 2000a. Freisetzungen in der BRD. http://www.rki.de/GENTEC/FREISETZUNGEN/FREISETZ_D.HTM (Stand: 18.05.2000)

  • RKI 2000b. Freigesetzte Organismen in den EU-Mitgliedstaaten. http://www.rki.de/GENTEC/FREISETZUNGEN/EU-GMO.HTM (Stand: 10.10.2000)

  • RRI (Rowett Research Institute, Aberdeen) 1998. Studies on crops genetically modified to include lectins with the potential to enhance the plants’ resistance to insect and nematode pests. Audit Report Overview. http://www.rri.sari.ac.uk/press/OVERVIEW.html

  • Schauzu M, Pöting A, Sachse K. 1998. Lebensmittel und Gentechnik. Eine Verbraucher-information. bgw-Informationsschrift, Bundesinstitut für gesundheitlichen Verbraucherschutz und Verterinärmedizin, Berlin

    Google Scholar 

  • SRU (Der Rat der Sachverständigen für Umweltfragen) 1998. Umweltgutachten 1998. Metzler-Poeschel, Stuttgart

    Google Scholar 

  • Stirn S. 1998. Toxizität transgener Pflanzen. In: Nutzung der Gentechnik im Agrarsektor der USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit, Studie im Auftrag des Umweltbundesamtes, Berlin, UBA-Texte 47/89, 653–676

    Google Scholar 

  • Taylor SL, Hefle SL. 1999. Seeking clarity in the debate over the safety of GM foods. Nature 402:575

    CAS  Google Scholar 

  • Trevawas A, Leaver CJ. 1999. Conventional crops are the test of GM prejustice. Nature 401:640

    Google Scholar 

  • UBA (Umweltbundesamt, Deutschland) 1998. Monitoring von Umweltwirkungen gentechnisch veränderter Pflanzen (GVP). Umweltbundesamt, Berlin. UBA-Texte 77/98

    Google Scholar 

  • WHO (World Health Organisation) 1993. Health Aspects of Marker Genes in Genetically Modified Plants. Report of a WHO Workshop, 1–32

    Google Scholar 

  • WHO, 2000. Safety aspects of genetically modified foods of plant origin. Report of a Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology, 29 May-2 June, Geneva, Switzerland

    Google Scholar 

Literatur

  • Anonym, 2000. Regulatory Agencies and the Spread of Transgenic Plants. A U.S. National Academies Report. Biotech Lab International 5-6:6

    Google Scholar 

  • APHIS (Animal and Plant Health Inspection Service) 1997. Determination of Nonregulated Status for Glyphosate-Tolerant Corn Line GA21. November 1997

    Google Scholar 

  • Dam van F. 2000. Hazard assessment of the allergenic potential of genetically modified food. In: Report of the Workshop „Genetically Modified Foods and Allergenecity: Safety Aspects and Consumer Information“, 28-29 May organized by Consumer & Biotechnology Foundation, Den Haag, The Netherlands, 21–32

    Google Scholar 

  • EPA (Environmental Protection Agency) 2000. Food Allergenecity of Cry9C Endotoxin and Other Non-digestible Proteins. SAP Report No. 2000-01A, June 29, 2000

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) Biotechnology and Food Safety. Report of a Joint FAO/WHO Consultation, Rome, Italy, 30.09.-04.10.1996

    Google Scholar 

  • Gendel SM. 1998a. Sequence databases for assessing the potential allergenicity of proteins used in transgenic foods. In: SL Taylor (ed.) Advances in Food and Nutrition Research. Academic Press, San Diego. Vol 42:63–92

    Google Scholar 

  • Gendel SM. 1998b.The use of amino acid sequence alignments to assess potential allergenicity of proteins used in genetically modified foods. In: SL Taylor (ed.) Advances in Food and Nutrition Research. Academic Press, San Diego. Vol 42:45–62

    Google Scholar 

  • Gilissen LJW, Nap JP. 1997. Assessment of allergenic potential of foods from genetically modified plants. By order of: Ministry of Economic Affairs and Ministry of Housing, Spatial Planning and Environment in the framework of CCRO-project#1. CPRO-DLO, Wageningen.

    Google Scholar 

  • Houben GF, Pennings AH. 1996. Evaluation of the Allergenecity of Food Proteins-Current testing Possibilities and New Developments Focused on the Role of the Gastr-Intestinal Tract Physiology. In: Food Allergies and Intolerances-Symposium, VCH, Weinheim, S. 183–195

    Google Scholar 

  • House of Lords 1998. Second Report: EC Regulation of Genetic Modificationn in Agriculture. European Communities Committee Publications, Großbritannien

    Google Scholar 

  • Jany KD, Greiner R. 1998. Gentechnik und Lebensmittel. Berichte der Bundesforschungsanstalt für Ernährung, http://dainet.de/bfe/deutsch/janybericht/janyberi.htm

  • Nordlee JA, Taylor SL, Townsend JA, Thomas LA, Bush RK. 1996. Identification of a Brazil-Nut Allergen in Transgenic Soybeans. The New England Journal of Medicine 334:688–692

    CAS  Google Scholar 

  • OECD (Organisation for Economic Co-operation and Development) 1997. Safety Assessment of New Foods: Results of an OECD survey of serum banks for allergenecity testing, and use of databases. SG/ICGB(97)1. OECD, Paris

    Google Scholar 

  • OECD 2000. GM Food Safety: Facts, Uncertainties, and Assessment. Rapporteurs’ Summary on the OECD Edinburgh Conference on the Scientific and Health Aspects of Genetically Modified Foods. 28 February-1 March 2000

    Google Scholar 

  • SRU (Der Rat der Sachverständigen für Umweltfragen) 1998. Umweltgutachten 1998. Metzler-Poeschel, Stuttgart

    Google Scholar 

  • Stirn S. 1998. Allergenität transgener Pflanzen. In: Nutzung der Gentechnik im Agrarsektor der USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit. Studie im Auftrag des Umweltbundesamtes, Berlin. UBA-Texte 47/98, 631–651

    Google Scholar 

  • UBA (Umweltbundesamt) 1999. Beitrag der Biotechnologie zu einer dauerhaft umweltgerechten Entwicklung. Umweltbundesamt, Berlin. UBA-Texte 1/99

    Google Scholar 

  • Vieths S. 1998. Allergenic potential of genetically modified plant foods-How reliable is the proposed assessment strategy? In: Proceedings of the International Symposium on „Novel Food Regulation in the European Union-Integrity of the Process of Safety Evaluation“ held in Berlin, November 18-20, 1997, 295–308

    Google Scholar 

  • WHO (World Health Organization) 2000. Safety aspects of genetically modified foods of plant origin. Report of a Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology. Geneva, Switzerland, 29 May-2 June 2000

    Google Scholar 

Literatur

  • Baur B, Hanselmann K, Schlimme W, Jenni B. 1996. Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl. Environm. Microbiol. 62:3673–3678

    CAS  Google Scholar 

  • Belgian Biosafety Server 1999. About GM Plants containing a bacterial antibiotic resistance gene. http://biosafety.ihe.be/ARGMO/GMO_Plants.html

  • Brandt P. 1999. Antibiotika-Resistenzgene als Marker in gentechnisch veränderten Pflanzen. Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz 9/42:51–57

    Google Scholar 

  • BSA (Bundessortenamt) 2000. Ruhen der Zulassung für GVO-Mais beim Bundessortenamt beantragt. Pressemitteilung vom 17.02.2000. http://www.bundessortenamt.de/internet⋯ktuelles/presse/Gen_Mais2000_02_17.htm

  • Calgene 1990. Request for Advisory Opinion. kan r Gene: Safety and Use in the Production of Genetically Engineered Plants. Calgene Incorporated, 1920 Fifth Street, Davis, California 95616, November 26, 1990

    Google Scholar 

  • EU (European Commission) 1999. Opion of the Scientific Steering Committee on Antimicrobial Resistance. Directorate General XXIV Consumer Politics and Consumer Health Protection, Unit B3 — Management of scientific committees II. 28. May 1999, Brüssel

    Google Scholar 

  • FDA (Food and Drug Administration, USA) 1998. Use of Antibiotic Resistance Marker Genes in Transgenic Plants: Guidance for Industry. http://vm.cfsan.fda.gov/∼lrd/biotechm.html

  • Gebhard F; Smalla K. 1998. Transformation of Acinetobacter sp. BD413 by transgenic sugar beet DNA. Appl. Environ. Microbiol. 64:1550–1554

    CAS  Google Scholar 

  • Heidenreich B. 1998. Horizontaler Gentransfer. In: Nutzung der Gentechnik im Agrarsektor der USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit. Studie im Auftrag des Umweltbundesamtes. UBA-Texte 47/98, Berlin, 157–238

    Google Scholar 

  • Hirsch W. 2000. Hinweise auf Gentransfer zwischen genetisch veränderten Pflanzen und Mikroorganismen. Fridrich Schiller Universität Jena. Informationsdienst Wissenschaft file:///C/FENSTER/TEMP/$WPM2B59.html, Stand 23.5.2000

    Google Scholar 

  • Hohlweg U, Schubbert R, Doerfler W. 2000 Fremde DNA überwindet die Darm-Blut-und die Plazentaschranke. BIOforum 3:120–122

    Google Scholar 

  • House of Lords 1998. Second report: EC Regulation of Genetic Modification in Agriculture. European Communities Committee Publications, Großbritannien

    Google Scholar 

  • Jany KD, Greiner R. 1998. Gentechnik und Lebensmittel. Berichte der Bundesforschungsanstalt für Ernährung, http://dainet.de/bfe/deutsch/janybericht/janyberi.htm

  • Joersbo M, Donaldson I, Petersen SG, Brunstedt J, Okkels FT. 1998. Analysis of mannose selection used for transformation of sugar beet. Mol Breeding 4:111–117

    CAS  Google Scholar 

  • Joersbo M, Okkels FT. 1996. A novel principle for selection of transgenic plant cells: positive selection. Plant Cell Reports 16:219–221

    CAS  Google Scholar 

  • Koenig A. 2000. Development and biosaefty aspects of transgene excision methods. In: Fairbairn C, Scoles G, McHughen A (eds.) Proceedings of the 6th International Symposium on The Biosafety of Genetically Modified Organisms, July 2000, University Extension Press, Saskatoon, Canada, 155–170

    Google Scholar 

  • Kunkel T, Niu Q-W, Chan Y-S, Chua N-H. 1999. Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nature Biotechnology 17: 916–919

    CAS  Google Scholar 

  • Lorenz MG, Wackernagel W. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 17:916–919

    Google Scholar 

  • Nielsen KM, Bones AM, Elsas JD van. 1997. Induced natural transformation of Acinetobacter calcoaceticus in soil microcosms. Applied and Environmental Microbiology 63(5):1945–1952

    CAS  Google Scholar 

  • Odell JT, Russell SH. 1994. Use of Site-Specific Recombination Systems in Plants. In: Paszkowski (ed.) Homologous Recombination and Gene Silencing in Plants. Kluwer Academic Publ., Netherlands, 219–270

    Google Scholar 

  • OECD (Organisation for Economic Co-operation and Development) 2000. Report of the Task Force for the Safety of Novel Food and Feed. C(2000)86/ADDl, 17-May-2000, http://www.oecd.org/subject/biotech/index.htm

  • Privalle LS, Wright M, Reed J et al. 2000. Phosphomannose isomerase-a novel system for plant selection: Mode of action and safety assessment. In: Fairbairn C, Scoles G, McHughen A (eds.) Proceedings of the 6th International Symposium on The Biosafety of Genetically Modified Organisms, July 2000, University Extension Press, Saskatoon, Canada, 171–178

    Google Scholar 

  • Puchta H. 2000. Removing selectable marker genes: taking the short cut. Trends in Plant Science 5(7):273–274

    CAS  Google Scholar 

  • Regenass-Klotz M, Mäschli C. 1999. Antibiotika-Resistenzgene in Nahrungspflanzen. Fachstelle BATS (Biosicherheitsforschung und Abschätzung von Technikfolgen des Schwerpunktprogrammes Biotechnologie), Basel. www.bioweb.ch/dossiers/antibiotikaresistenz/einführung.html

  • Salyers A. 1998 Genetically Engineered Foods: Safety Issues Associated with Antibiotic resistance Genes. ROAR Report for APUA (Alliance for the Prudent Use of Antibiotics). www.healthsci.tufts.edu/apua/salyersreport.htm

  • Schiemann J, Weber A; Hassa A. 1998. Überprüfung von Konzepten zur nachträglichen Fremdgen-Eliminierung aus transgenen Pflanzen. In: Jahresbericht der BBA 1998, Berlin und Braunschweig, Abstract Nr. 189

    Google Scholar 

  • Schlüter K, Fütterer J: Potrykus I. 1995. „Horizontal“ Gene Transfer from a Transgenic Potato Line to a Bacterial Pathogen (Erwinia chryanthemi) Occurs — if at All — at an Extremely Low Frequency. BIO/TECHNOLOGY 13:1094–1098

    Google Scholar 

  • Schlüter K, Potrykus I. 1996. Horizontaler Gentransfer von transgenen Pflanzen zu Mikroorganismen (Bakterien und Pilzen) und seine ökologische Relevanz. In: Schulte E, Käppeli, O. (eds.) Gentechnisch veränderte krankheits-und schädlingsresistente Nutzpflanzen, BATS, Basel, 161–191

    Google Scholar 

  • Schomberg R von. 1998. An appraisal of the working in practice of directive 90/220EEC on the deliberate release of genetically modified organisms (funded by STOA [Scientific and Technological Options Assessment] of the European Parliament), Luxemburg

    Google Scholar 

  • Schubbert R, Lettmann L, Doerfler W. 1994. Ingested foreign (phage M13) DNA survives transiently in the gastrointestinal tract and enters the bloodstream of mice. Mol Gen. Genet. 242:495–504

    CAS  Google Scholar 

  • Slater JH. 1985. Gene transfer in microbial communities. In: Halvorson HO, Pramer D, Rogul M. (eds.) Engineered organisms in the environment — Scientifc issues. Washington D.C., 89–98

    Google Scholar 

  • Smalla K, Gebhard F, Heuer H. 2000. Antibioitka-Resistenzgene als Marker in gentechnisch veränderten Pflanzen — Gefahr durch horizontalen Gentransfer? Nachrichtenbl. Deut. Pflanzenschutzd. 52:62–68

    Google Scholar 

  • Smalla K, van Overbeek LS, Pukall R, van Elsas JD. 1993. Prevalenz of npt II and Tn 5 in kanamycin-ressitant bacteria from different environments. FEMS Microbiology Ecology 13:47–58

    CAS  Google Scholar 

  • SRU (Der Rat der Sachverständigen für Umweltfragen) 1998. Umweltgutachten 1998. Metzler-Poeschel, Stuttgart

    Google Scholar 

  • Torgersen H, Seifert F. 1999. Austria: Precautionary Blockage of Transgenic Crops (and Food?), country report on Austria for the project „Safety Regulation of Transgenic Crops-Completing the Internal Market? (funded by DGXII RTD [ELSA]). ITA (Institut für Technikfolgenabschätzung), Wien

    Google Scholar 

  • UBA (Umweltbundesamt) 1999. Beitrag der Biotechnologie zu einer dauerhaft umweltgerechten Entwicklung. Umweltbundesamt, Berlin. UBA-Texte 1/99

    Google Scholar 

  • ZKBS (Zentrale Kommission für die Biologische Sicherheit) 1997. Stellungnahme der ZKBS zum Ampicillinresistenz-Gen in gentechnisch verändertem Mais. Stellungnahme vom 1. Juli 1997. http://www.rki.de/GENTEC/ZKBS/ALLGSTELL/97/ZKBS_AMP.HTM (last update: 23.07.1999)

Literatur

  • Ammann K, Jacot Y, Rufener AL, Mazyad P. 1996. Field release of transgenic crop in Switzerland, an ecological risk assessment, In: Schulte E, Käppeli O. (eds.) Gentechnisch veränderte krankheits-und schädlingsresistente Nutzpflanzen — Eine Option für die Landwirtschaft, Schwerpunktprogramm Biotechnologie des Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung, Bern 101–158

    Google Scholar 

  • Anonym 1998. Neues Verfahren vereitelt „Farmers Privilege“. Transkript 4(5):20

    Google Scholar 

  • Bartsch D, Sukopp H, Sukopp U. 1993. Indroduction of plants with special regard to cultigens running wild. In: Wöhrmann K, Tomiuk J. (eds.) Transgenic Organisms, Birkhäuser, Basel, 135–151

    Google Scholar 

  • Bartsch D. 1999. Monitoring gentechnisch veränderter Pflanzen am Beispiel von Beta vulgaris mit Rizomania-Resistenz und Phosphinothricin-/Kanamycin-Toleranzmarkern. Habilitationsschrift,Univ. Aachen, 185 S

    Google Scholar 

  • Conner AJ. 1994a. Analysis of containment and food safety issues associated with the release of transgenic potatoes. The molecular and cellular biology of the potato: 245–264 CAB International, Wallingford, UK

    Google Scholar 

  • Conner AJ. 1994b. Biosafety assessment of transgenic potatoes: Environmental monitoring and food safety evaluation. in: Jones DD. (ed.) Proceedings of the 3rd International Symposium on “The Biosafety Results of Field Tests of Genetically Modified Plants and Microorganisms”; Monterey, California, 245–262

    Google Scholar 

  • Crawley MJ, Hails RS, Rees M, Kohn D, Buxton J. 1993. Ecology of transgenic oilseed rape in natural habitats. Nature 363:620–623

    Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee S-B. 1998. Containment of herbicide resistance through genetic enginieering of the chloroplast genome. Nature Biotech. 16:345–348.

    CAS  Google Scholar 

  • Desplanque B, Buodry P, Broomberg K, Saumitou-Laprade P, Cuguen J, Van Dijk H. 1999. Genetic diversity and gene flow between wild, cultivated and weedy froms of Beta vulgaris L. (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theor Appl Genet 98:1194–1201

    CAS  Google Scholar 

  • Doebley J. 1990. Molecular evidence for gene flow among Zea species. BioScience 40:443–448

    Google Scholar 

  • Downey RK. 1999. Gene flow and rape the Canadian experience. BCPC Symposium Proc. 72:95–100

    Google Scholar 

  • Ellstrand NC, Hoffman CA. 1990. Hybridization as an avenue of escape for engineered genes-Strategies for Risk Reduction. BioScience 40:438–442

    Google Scholar 

  • George RAT. 1985. Vegetable seed production, London, 318 S.

    Google Scholar 

  • Gerdemann-Knörck M, Tegeder M. 1997. Kompendium der tur Freisetzungen relevanten Pflanzen; hier Brassicaceae, Beta vulgaris, Linum usitatissimum. Texte des Umweltbundesamtes 38:1–221.

    Google Scholar 

  • Gliddon CJ. 1999. Gene flow and risk assessment. BCPC Symposium Proc. 72:49–56

    Google Scholar 

  • Goodspeed TH. 1954. The genus Nicotiana. Chronica Bot. 16:536, Massachusets

    Google Scholar 

  • Grant V. 1950. The flower constancy of bees. Botanical Review 16:379–398

    Google Scholar 

  • Gray AJ, Raybould AF. 1998. Reducing gene escape routes. Nature 392:635–636

    Google Scholar 

  • Gressel J. 1999. Tandem constructs: Preventing the rise of superweeds. Trends in Biotechnology 17(9):361–366

    CAS  Google Scholar 

  • Hancock JF, Grumet R, Hokanson SC. 1996. The opportunity for escape of engineered genes from transgenic crops. Hort Science 31:1080–1085

    Google Scholar 

  • Hankeln T, Feldmann RC, Schmidt ER. 1998. Untersuchungen zum Gentransfer und zur Freisetzung von DNA aus transgenen Pflanzen. Bundesgesundheitsblatt 12:542–547

    Google Scholar 

  • Heiser CB. 1973. Introgression re-examined. Bot. Rev. 39:347–366

    Google Scholar 

  • Hoffmann M, Köhler W. 2000. Modellierung von Genfluß und Verwilderung bei transgenen Zuckerrüben (Beta vulgaris convar. altissima DÖLL). Proceedings zum BMBF-Statusseminar „Biologische Sicherheitsforschung bei Freilandversuchen mit transgenen Organismen und anbaubegleitendes Monitoring“ 29-30.6 1999, Braunschweig: 129–134

    Google Scholar 

  • Højland JG, Poulsen GS. 1994. Five cultivatetd plant species: Brassica napus L. ssp. napus (Rape), Megicago sativa L. ssp. sativa (Lucerne/Alfalfa), Pisum sativum L. ssp. sativum (Pea), Populus L. spp (Poplars), Solanum tuberosum L. ssp. tuberosum (Potato) — Dispersal, establishement and interactions with the environment. The National Forst and Natur Agency, Copenhagen

    Google Scholar 

  • Hokanson SC, Grumet R, Hancock JF. 1997. Effect of border rows and trap/donor ratios on pollen-mediated gene movement. Ecological Applications, in press

    Google Scholar 

  • Howe HF, Smallwood J. 1982. Ecology of seed dispersal. Ann. Rev. Syst. 13:201–228

    Google Scholar 

  • Jordan N. 1999. Escape of pest resistance transgenes to agricultural weeds: Relevant facts of weed ecology, In: Traynor PL, Westwood JH. (eds.) Proceedings of the workshop on: Ecological effects of pest resitance genes in managed ecosystems 31.1.-3.2.99 Bethesda, Maryland, 27–36

    Google Scholar 

  • Kapteijns AJAM. 1993. Risk Assessment of genetically modified crops. Potential of four arable crops to hybridize with the wild flora. Euphytica 66:145–149

    Google Scholar 

  • Knapp R. 1984. Perspectives on species differentiation and on hybridization in vegetation analysis and in phytosociological relevés. In: Knapp R. (ed.) Sampling methods and taxon analysis in vegetation science. Junk Publ., The Hague, Boston, London, 23–34

    Google Scholar 

  • Kriete G, Niehaus K, Perlick AM, Pühler A, Broer I. 1996. Male sterility in transgenic tobacco plants induced by tapetum-specific deacetylation of the externally applied nontoxic compound N-acetyl-L-phosphinothricin. Plant J 9:809–818

    CAS  Google Scholar 

  • LaSota LR. 1992. Field tests of cotton genetically modified to contain a delta endotoxin gene from Bacillus thuringiensis. Caspar R, Landsmann J. (eds.) Proceedings of the 2nd International Symposium on “The Biosafety Results of Field Tests of Genetically Modified Plants and Microorganisms“ Goslar, 257–260

    Google Scholar 

  • Lavigne C, Godelle B, Reboud X, Gouyon PH. 1996. A method to determine the mean pollen dispersal of individual plants growing within large pollen source. Theor Appi Genet 93:1319–1326

    Google Scholar 

  • McCartney HA, Lacey ME. 1991. Wind dispersal of pollen from crops of oilseed rape (Brassica napus L.). J. Aerosol Sci. 22(4):467–477

    Google Scholar 

  • Mikkelsen TR, Andersen B, Jörgensen RB. 1996. The risk of crop transgene spread. Nature 380:31

    CAS  Google Scholar 

  • Neuroth B. 1997. Kompendium der für Freisetzungen relevanten Pflanzen; hier Solanaceae, Poaceae, Leguminosae. Texte des Umweltbundesamtes 62:1–341

    Google Scholar 

  • Norris CE, Simpson EC, Sweet JB, Thomas JE, 1999. Monitoring weediness and persistence of genetically modified oilseed rape (Brassica napus) in the UK. In: British Crop Protection Council (ed.) Proceedings No. 12, Gene Flow and Agriculture: Relevance for transgenic crops, 255–260

    Google Scholar 

  • Paul EM, Thompson C, Dunwell JM. 1995. Gene dispersal from genetically modified oil seed rape in the field. Euphytica 81:283–289

    Google Scholar 

  • Peacock J. 1990. Ways to pollen sterility. Nature 347:714–715

    Google Scholar 

  • Pellmann H, Reißer W, Theophilou S, Schlegel M. 1998. Begleitforschung zu Freisetzungen gentechnisch veränderter Pflanzen in Sachsen. Bundesgesundheitsblatt 12:552–559

    Google Scholar 

  • Pfeilstetter E, Matzk A, Schiemann J, Feldmann SD. 1998. Untersuchungen zum Auskreuzungsverhalten von Liberty-tolerantem Winterraps auf nicht-transgenen Raps. In: BMBF-Workshop Biologische Sicherheit, Braunschweig 1998:175–183

    Google Scholar 

  • Pinder R, Al-Kaff N, Kreike M, Dale P. 1999. Evaluating the risk of transgene spread from Brassica napus to related species. BCPC Symposium Proc. 72:275–280

    Google Scholar 

  • Pühler A. 1998. Einfluß von freigesetzten und inverkehrgebrachten, gentechnisch veränderten Organismen aus Mensch und Umwelt. In: Der Rat von Sachverständigen für Umweltfragen (ed.) Zu Umweltproblemen der Freisetzung und des Inverkehrbringens gentechnisch veränderter Pflanzen. 1–50

    Google Scholar 

  • Ramsay G, Thompson CE, Neilson S, Mackay GR. 1999. Honeybees as vectors of GM oilseed rape pollen BCPC Symposium Proc. 72:203–208

    Google Scholar 

  • Raybould AF, Clarke RT. 1999. Defining and measuring gene flow. BCPC Symposium Proc. 72:41–48

    Google Scholar 

  • Raybould AF, Gray AJ. 1993. Genetically modified crops and hybridization with wild relatives: a UK perspective. J. Applied Ecology 30:199–219

    Google Scholar 

  • Regal PJ. 1982. Pollination by wind and animals: Ecology of greographic patterms. Ann. Rev. Ecol. Syst. 13:497–524

    Google Scholar 

  • Rothmaler W. 1982. Exkursionsflora für die Gebiete der DDR und der BRD. Bd. 4

    Google Scholar 

  • Rotino GL, Perri E, Zottini M, Sommer H, Spena A. 1997. Genetic engineering of parthencarpic plants. Nature Biotech. 15:1398–1401

    CAS  Google Scholar 

  • Scheffler JA, Parkinson R, Dale PJ. 1993. Frequency and distance of pollen dispersal from transgenic oilseed rape(Brassica napus). Transgenic Research 2:356–364

    Google Scholar 

  • Scheffler JA., Parkinson R, Dale PJ. 1995. Evaluating the effectiveness of isolation distances for field plots of oilseed Rape(Brassica napus) using a herbicide-resistance transgene as a selectabel marker. Plant Breeding 114:317–321

    Google Scholar 

  • Schütte G. 1998. Vertikaler Gentransfer. In: Nutzung der Gentechnik im Agrarsektor des USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit, Texte des Umweltbundesamtes, Berlin, UBA-Texte 47/98:239–270

    Google Scholar 

  • Schütte G. 2001. Gene transfer and invasiveness of transgenic plants or their hybrid progeny. http://www.gtz.de/biotech/document.htm, im Druck

  • Scott SE, Wilkinson MJ. 1998. Transgene risk is low. Nature 393:320

    CAS  Google Scholar 

  • Scott SE, Wilkinson MJ. 1999. Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa. Nature Biotech. 17:390–392.

    CAS  Google Scholar 

  • Simoson EC, Norris CE, Law JR. 1999. Gene flow in genetically modified herbicide tolerant oilseed rape (Brassica napus) in the UK. BCPC Symposium Proc. 72:75–82

    Google Scholar 

  • Squire GR, et al. 1999. Gene flow at the landscape level. BCPC Symposium Proc. 72:57–64

    Google Scholar 

  • SRU (Der Rat von Sachverständigen für Umweltfragen) 1998. Umweltgutachten 1998, Metzler Poeschel, Stuttgart

    Google Scholar 

  • Stace CA. 1975. Hybridization and the flora of the British Isles. Academic Press, London

    Google Scholar 

  • Sukopp U, Sukopp H. 1994. Ökologische Langzeit-Effekte der Verwilderung von Kulturpflanzen in: Daele, W. van den et al. (eds.) Verfahren zur Technikfolgenabschätzung des Anbaus von Kulturpflanzen mit gentechnisch erzeugter Herbizidresistenz Heft 4, WZB Berlin, 150 S.

    Google Scholar 

  • Sukopp U, Sukopp H. 1997. Ökologische Dauerbeobachtung genetisch veränderter Kulturpflanzen als Instrument der biologischen Sicherheitsforschung und des Naturschutzes. In: Landesanstalt für Umweltschutz Sachsen-Anhalt (ed.): 6. Tagung des Arbeitskreises der Landesämter und-anstalten „Naturschutz in der Agrarlandschaft“, Berichte aus dem Landesamt für Umweltschutz Sachsen-Anhalt, Sonderheft 3

    Google Scholar 

  • Thompson CE, Squire G, Mackay et al. 1999. Regionais patterns of gene flow and its consequence for GM oilseed rape. BCPC Symposium Proc. 72:95–100

    Google Scholar 

  • Torgensen H. 1996. Ökologische Effekte von Nutzpflanzen — Grundlagen für die Beurteilung transgener Pflanzen? Österreichisches Umweltbundesamt, Monographien 74:1–54

    Google Scholar 

  • USDA (United States Department of Agriculture) 1999. Biotechnology Risk Assessment Research Grants Program Home Page, http://www.reeusda.gov/crgam/biotechrisk.biotech.htm

  • Vigouroux Y, Darmency, de Garambe TG, Richard-Molard M, 1999. Gene flow between sugar beet and weed beet. BCPC Symposium Proceedings 72: Gene flow and agriculture: Relevance for transgenic crops, 83–88

    Google Scholar 

Literatur

  • Gebhard F, Smalla K. 1998. Transformation of Acinetobacter sp. BD413 by transgenic sugar beet DNA. Appl. Environm. Microbiol 64:1550–1554

    CAS  Google Scholar 

  • Heidenreich B. 1998. Horizontaler Gentransfer. In: Nutzung der Gentechnik im Agrarsektor der USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit. Umweltbundesamt, Berlin. UBA-Texte 47/98, 157–239

    Google Scholar 

  • Heidenreich B. 1999. Analyse und Bewertung der Risikoforschung zur Freisetzung gentechnisch veränderter Mikroorganismen. Dissertation FB Biologie, Universität Hamburg 1999

    Google Scholar 

  • Hirsch W. 2000. Hinweise auf Gentransfer zwischen genetisch veränderten Pflanzen und Mikroorganismen. Fridrich Schiller Universität Jena. Informationsdienst Wissenschaft file:///C/FENSTER/TEMP/$WPM2B59.html, Stand 23.5.2000

    Google Scholar 

  • Hoffmann A, Thimm T, Droge M, Moore ERB, Munch JC, Tebbe CC. 1998. Intergeneric tranfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microathropod Folsomia candida (Collembola). Applied and Environmental Microbiology 64:2652–2659

    CAS  Google Scholar 

  • Houck MA, Clark JB, Peterson KR, Kidwell MG. 1991. Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regalis. Science 253:1125–1129

    CAS  Google Scholar 

  • Kellner M, Burmester A, Wöstemeyer A, Wöstemeyer J. 1993. Transfer of genetic information form the mycoparasite Parasitella parasitica to its host Absidia glauca. Current Genetics 23:334–337

    CAS  Google Scholar 

  • Lorenz MG, Wackernagel W. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiological Reviews 58(3):563–602

    CAS  Google Scholar 

  • Nielsen KM, van Elsas JD, Smalla K. 2000. Transformation of Acinetobacter sp. Strain BD413(pFG4deltanptII) with Transgenic Plant DNA in Soil Microcosm and Effects of Kanamycin on Selection of Transformants. Appl. Environm. Microbiol. 66(3): 1237–1242

    CAS  Google Scholar 

  • SRU (Der Rat der Sachverständigen für Umweltfragen) 1998. Umweltgutachten 1998. Metzler-Poeschel, Stuttgart, 283–284

    Google Scholar 

  • Tebbe CC. 2000. Potentials of gene transfer from genetically modified plants to micoorganisms — pitfalls of detecting transfer events. At: ESF/AIGM (European Science Foundation) The environmental implications of genetically modified plants with insect resistance genes. Workshop, September 2000, Bern, Switzerland

    Google Scholar 

  • USDA (United States Department of Agriculture) 1999. Biotechnology Risk Assessment Research Grants Program Home Page. http://www.reeusda.gov/crgam/biotechrisk.biotech.htm

  • Wackernagel W, Lorenz MG. 1994. DNA-Entlassung aus Bakterien, DNA-Überdauerung und genetische Transformation im natürlichen Lebensraum. In: BMFT (Ed.) Biologische Sicherheit, Bonn, 3:9–33

    Google Scholar 

Literatur

  • Ammann K, Jacot Y, Rufener AL, Mazyad P. 1996. Field release of transgenic crop in Switzerland, an ecological risk assessment, In: Schulte E, Käppeli O. (eds.) Gentechnisch veränderte krankheits-und schädlingsresistente Nutzpflanzen — Eine Option für die Landwirtschaft, Schwerpunktprogramm Biotechnologie des Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung, Bern, 101–158

    Google Scholar 

  • Antonovics J. 1999. Pathogens and Plant Polpulation Dynamics: In: Traynor PL, Westwood JH. (eds.) The Effects of Resistance Genes on Numbers and Distribution. In: Ecological Effects of Pest Resistance Genes in Managed Ecosystems. Information Systems für Biotechnology, 49–56

    Google Scholar 

  • Baker HG. 1965. Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL. (eds.) The genetics of colonizing species, New York, 147–172

    Google Scholar 

  • Baker HG. 1986. Patterns of plant invasion in North America. In: Mooney HA, Drake JA. (eds.) Ecology of biological invasions of North America and Hawaii. Ecological Studies 58:44–57

    Google Scholar 

  • Bartsch D, Schmidt M, Pohl-Orf M, Haag C, Schuphan I. 1996. Competitiveness of transgenic sugar beet resistant to Beet Necrotic Vein Virus and potential impact on wild beet population. Molecular Ecology 5:199–205

    Google Scholar 

  • Bartsch D. 1994. Ergebnisse der ökologischen Begleitforschung 1993. Mitteilungen aus der NNA 1:40–43

    Google Scholar 

  • Bartsch D. 1999. Monitoring gentechnisch veränderter Pflanzen am Beispiel von Beta vulgaris mit Rizomania-Resistenz und Phosphinothricin-/Kanamycin-Toleranzmarkern. Habilitationsschrift, Univ. Aachen, 185 S.

    Google Scholar 

  • Bartsch D., Pohl-Orf M, Schmidt M, Schuphan I. 1994. Naturalization of transgenic (BNYV-Virus Resistant) sugar beets in agricultural and non-agricultural areas. In: Jones DD. (ed.) Proceedings of the 3rd International Symposium,“The biosafety results of field tests of GM plants and MOs”, July 13-16, Monterey, Kalifornien, 353–361

    Google Scholar 

  • Blossey B, Notzold R. 1995. Evolution of increased competitive ability in invasive nonindigenous plants: A hypothesis. J. Ecol 83(5):887–889

    Google Scholar 

  • Champolivier J, Gasquez J, Messean A, Richard-Molard M. 1999. Management of transgenic crops within the cropping system. In: BCPC Symposium Proceedings 72, Gene flow and agriculture: Relevance for transgenic crops, 233–240

    Google Scholar 

  • Colwell RK, Norse EA, Pimentel D, Sharpies FE, Simberloff D. 1985. Genetic engineering in agriculture. Science 229:111–112

    CAS  Google Scholar 

  • Crawley MJ, Hails RS, Rees M, Kohn D, Buxton J. 1993. Ecology of transgenic oilseed rape in natural habitats. Nature 363:620–623.

    Google Scholar 

  • Crawley MJ. 1987. What makes a community invasible. In: Gray AJ, Crawley MJ, Edwards PJ. (eds.) Colonization, succession and stability, 428–453

    Google Scholar 

  • Crawley MJ. 1995. The ecology of transgenic plants. In: Environmental impact of genetically-modified Crops. Workshop at ITE Monks Wood, 28-30 November 1995

    Google Scholar 

  • Diamond JM. 1984. Historic extinctions: A Rosetta Stone for understanding prehistoric extinctions. A prehistoric revolution. In: Martin PS, Klein RG. (eds.) Quaternary extinctions, Tucson, Arizona, 824–862

    Google Scholar 

  • Ehrlich PR. 1989. Attributes of invaders and the invading processes: Vertebrates. In: Drake JA, Mooney HA, Castri F, di Groves RH, Kruger FJ, Rejmánek M, Williamson M. (eds.) Biological invasions: a global perspective. SCOPE 37, Chichester, 315–328

    Google Scholar 

  • Fuchs M, Gonsalves D. 1999. Risk assessment of gene flow from a virus-resistant transgenic squash into a wild relative. In: Ammann K, Jacot Y, Simonsen V, Kjellsson G (eds.). Methods for Risk Assessment of Transgenic Plants. III. Ecological risks and prospects of transgenic plants, where do we go from here? A dialogue between biotech industry and science, Basel, Schweiz, 141–143

    Google Scholar 

  • Gerdemann-Knörck M, Tegeder M. 1997. Kompendium der für Freisetzungen relevanten Pflanzen; hier Brassicaceae, Beta vulgaris, Linum usitatissimum. Texte des Umweltbundesamtes 38:1–221

    Google Scholar 

  • Hancock JF, Grumet R, Hokanson SC. 1996. The opportunity for escape of engineered genes from transgenic crops. Hort Science 31:1080–1085

    Google Scholar 

  • Howarth FG. 1991. Environmental impacts of classical biological control. Annu. Rev. Entomol. 36:485–509

    Google Scholar 

  • Jørgensen RB. 1999. Gene flow from oilseed rape (Brassica napus) to related species. In: BCPC Symposium Proceedings 72, Gene flow and agriculture: Relevance for transgenic crops, 117–124

    Google Scholar 

  • Keeler KH. 1989. Can genetically engineered crops become weeds? Bio/Technology 7:1134–1139

    Google Scholar 

  • Kowarik I, Schepker 1998: Plant invasions in Northern Germany: human perception and response, In: Starfinger U, Edwards K, Kowarik I, Williamson M (eds.) Plant Invasions: Ecological mechanisms and human responses, Leiden, Backhuys, 109–120

    Google Scholar 

  • Kowarik I. 1988. Zum menschlichen Einfluß auf Flora und Vegetation-Theoretische Konzepte und eine Quantifizierungsansatz am Beispiel Berlin (West). Landschaftsentwicklung und Umweltforschung.-Schriftenr. d. Fachbereichs Landschaftsentw. d. TU Berlin 56, 280 S.

    Google Scholar 

  • Kowarik I. 1996. Auswirkungen von Neophyten auf Ökosysteme und deren Bewertung. In: Langzeitmonitoring von Umwelteffekten transgener Organismen. Arbeitstagung am 5./6. Oktober 1995, Texte des Umweltbundesamtes, Berlin, UBA-Texte 58/96:119–155

    Google Scholar 

  • Linder R. 1995. Seedbank dynamics in Brassica: A targeted approach to risk assessment. At: Environmental impact of genetically-modified crops. Workshop at ITE Monks Wood, 28-30 November 1995

    Google Scholar 

  • Lohmeyer W. 1971. Zur Ausbreitung fremder nitrophiler Pflanzenarten. In: Olschowy G. (ed.) Belastete Landschaft-gefährdete Umwelt, München, 177–183

    Google Scholar 

  • Louda SM. 1999. Insect Limitation of Weedy Plants and Ist Ecological Implications. In: Traynor PL, Westwood JH. (eds.) Ecological Effects of Pest Resistance Genes in Managed Ecosystems. Information Systems für Biotechnology: 43–48

    Google Scholar 

  • MacArthur RH, Wilson EG. 1967. The Theory of Island Biogeography. Princeton Univ. Press, Princeton, NJ

    Google Scholar 

  • Macdonald IAW, Lloyd LL, Usher MB, Hamann O. 1989. Wildlife conservation and the invasion of nature reserves by introduced species: A global perspective. In: Drake JA, Mooney HA, Castri F di, Groves RH, Kruger FJ, Rejmánek M, Williamson M. (eds.) Biological invasions: A global perspective, Chichester, SCOPE 37:215–256

    Google Scholar 

  • Marvier M, Kareiva K. 1999. Extrapolating from Field Experiments tha Remove Herbivores to Population-Level Effects of Herbivore Resistance Genes. In: Traynor PL, Westwood JH. (eds.) Ecological Effects of Pest Resistance Genes in Managed Ecosystems. Information Systems für Biotechnology:57–64

    Google Scholar 

  • Miller HI, Huttner SL, Beachy R. 1993. Risk assessment experiments for “genetically modified” plants. Bio/Technology 11:1323–1324

    Google Scholar 

  • Mooney HA, Drake JA. 1989. Biological invasions: A SCOPE Program Overview. In: Drake JA, Mooney HA, Castri F di, Groves RH, Kruger FJ, Rejmánek M, Williamson M. (eds.) Biological invasions: A Global Perspective, Chichester, SCOPE 37:491–508

    Google Scholar 

  • Müller HJ. 1984. (ed.) Ökologie. Stuttgart, 395 S.

    Google Scholar 

  • Neeser C. 1999. Report of the brassica crops working group. In: Traynor PL, Westwood JH. (eds.) Ecological Effects of Pest Resistance Genes in Managed Ecosystems. Information Systems für Biotechnology, 73–78

    Google Scholar 

  • OECD 1999 http://www.oecd.org/ehs/agdGMTre.htm

    Google Scholar 

  • Parker IM, Kareiva P. 1997. Assessing the risks of invasion for genetically engineered plants: acceptable evidence and reasonable doubt. Biological Conservation 781(2): 193–203

    Google Scholar 

  • Pimentel D. 1986. Population dynamics and the importance of evolution in successful biological control. Fortschritte der Zoologie 32:3–18

    Google Scholar 

  • Plachter H. 1991. Naturschutz. G Fischer, Stuttgart, 463 S.

    Google Scholar 

  • Raybould AF, Jones AE, Alexander M, Pallett D, Thurston MI, Cooper JI, Wilkinson MJ, Gray AJ. 2000. The potential for ecological release following introgression of virus-resistance transgenes into natural populations of wild Brassica species. In: Fairbairn C, Scoles G, McHughen A. (eds.) Proceedings of the 6th International Symposium on The Biosafety of Genetically Modified Organisms, July 2000, Saskatoon, Canada, 105–111

    Google Scholar 

  • Rejmánek M. 1989. Invasibility of plant Communities. In: Drake JA, Mooney HA, Castri F di, Groves RH, Kruger FJ, Rejmánek M, Williamson M. (eds.) Biological invasions: A global perspective, Chichester, SCOPE 37:369–388

    Google Scholar 

  • Sandlund OT, Schei PJ, Viken A. 1996. Proceedings of the Norway/UN conference on alien species: Trondheim, Directorate for Nature Management and Norvegian Institute for Nature Research: 233

    Google Scholar 

  • Schmitz G. 1998. Impatiens parviflora D.C. (Balsaminaceae) als Neophyt in mitteleuropäischen Wäldern und Forsten — Eine biozönotische Analyse. Z Ökol Natursch. 7:193–206.

    Google Scholar 

  • Schroeder D. 1983. Biological control of weeds. In: Fletcher WW. (ed.) Recent advances in weed research. Commonw. Agric. Bureau, Unwin Brothers, Surey, 41–78

    Google Scholar 

  • Schroeder F-G. 1969. Zur Klassifizierung der Anthropochoren. Vegetatio 16:225–238

    Google Scholar 

  • Schütte G. 1998. Invasivität transgener Pflanzen, In: Nutzung der Gentechnik im Agrarsektor der USA — Die Diskussion von Versuchsergebnissen und Szenarien zur Biosicherheit, Texte des Umweltbundesamtes, Berlin, UBA-Texte 47/98:271–306

    Google Scholar 

  • SRU (Der Rat von Sachverständigen für Umweltfragen) 1998. Umweltgutachten 1998, Metzler Poeschel, Stuttgart

    Google Scholar 

  • Stewart CN, Halfhill MD. 2000. Consequences of gene flow from Bt canola. ESF/AIGM (European Science Foundation) The environmental implications of genetically modified plants with insect resistance genes. Workshop, September 2000, Bern, Switzerland

    Google Scholar 

  • Stewart CN. 1999. Insecticidal transgenes into nature: gene flow, ecological effects, relevancy, and monitoring, In: Relevance for transgenic crops. British Crop Protection Council Symposium Proceedings No. 72:179–190.

    Google Scholar 

  • Strauss S. Report of the poplar working group. In: Traynor PL, Westwood JH. (eds.) Ecological Effects of Pest Resistance Genes in Managed Ecosystems. Information Systems für Biotechnology, 105–112

    Google Scholar 

  • Strong DR, Lawton JH, Southwood R. 1984. Insects on plants-community patterns and mechanisms. 1. Aufl., Camelot Press, Great Britain, 313 S.

    Google Scholar 

  • Sukopp H, Kowarik I. 1994. Auswirkungen der Freisetzung nichtheimischer Gehölzearten am Beispiel von Berlin und Brandenburg, Biologische Sicherheit Bd. 3 Forschung Biotechnologie: 1009–1033

    Google Scholar 

  • Sukopp H. 1976 Dynamik und Konstanz in der Flora der Bundesrepublik Deutschland, Schriftenr. Vegetationskde. 10: 9–26

    Google Scholar 

  • Sukopp H. 1996. Welche Natur wollen wir schützen? Fragen der Ökologie und des Naturschutzes. In: Langzeitmonitoring von Umwelteffekten transgener Organismen. Arbeitstagung am 5./6. Oktober 1995, Berlin, 27–46

    Google Scholar 

  • Sukopp U, Sukopp H. 1994. Ökologische Langzeit-Effekte der Verwilderung von Kulturpflanzen In: Daele W. van den et al. (eds.) Verfahren zur Technikfolgenabschätzung des Anbaus von Kulturpflanzen mit gentechnisch erzeugter Herbizidresistenz, WZB Berlin, Heft 4, 150 S.

    Google Scholar 

  • Sweet JB, Norris CE, Simpson E, Thomas JE. 1999. Gene flow and agriculture: Relevance for transgenic crops. BCPC Symposium Proceedings 72, 241–246

    Google Scholar 

  • Torgensen H, Seifert F. 1999. Austria: Precautionary blockage of transgenic crops.

    Google Scholar 

  • Traynor PL, Westwood JH. (eds.) 1999. Ecological Effects of Pest Resistance Genes in Managed Ecosystems. Information Systems für Biotechnology, Blacksburg, Virginia, 129 S.

    Google Scholar 

  • Trepl L, Sukopp H. 1993. Zur Bedeutung der Introduktion und Naturalisation von Pflanzen und Tieren für die Zukunft der Artenvielfalt. Rundgespräche der Kommission für Ökologie 6, 127–142

    Google Scholar 

  • Trepl L. 1990. Zum Problem der Resistenz von Pflanzengesellschaften gegen biologische Invasoren. Verh. Berliner Bot. Ver. 8:195–230

    Google Scholar 

  • USDA (United States Department of Agriculture) 1999. Biotechnology Risk Assessment Research Grants Program Home Page. http://www.reeusda.gov/crgan/biotechrisk.biotech.htm

  • Vitousek PM. 1986. Biological invasions and ecosystem properties: Can species make a difference? In: Mooney HA, Drake JA. (eds.) Ecology of biological invasions of North America and Hawaii. Ecological Studies 58:163–176

    Google Scholar 

  • Vries de FT, van der Meijden R, Brandenburg WA. 1992. Botanical files. A study of the real chances for spontaneous gene flow from cultivated plants to the wild flora of the Netherlands. Gorteria Suppl. 1

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Stirn, S., Schmitz, G., Schütte, G., Oldendorf, S. (2001). Stand der Sicherheitsforschung und Risikoabschätzung zu allgemeinen Risiken. In: Schütte, G., Stirn, S., Beusmann, V. (eds) Transgene Nutzpflanzen. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8282-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8282-8_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6475-5

  • Online ISBN: 978-3-0348-8282-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics